
* 1' Copy .Oof 42 copies

Lfl
00
a) IDA DOCUMENT D-754

REUSE IN PRACTICE WORKSHOP SUMMARY•I

James Baido. Jr.

April 1990 (:i1)T E

4 EP121990* U
&E

Prepared for
Strategic Defense Initiative Organization

DIST11F17UTION STATEMENTE A1

Appr(vr!d for public relecse
Distribution Unlimited

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

90 o> 1 043 IDA Log No. HOU90O01A

DEFINITIONS
IDA publishes the following documents to report the results of Its work.

Reports
Reports am the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address Issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels composed of seanlr Individuals addrcing major Issues which otheiwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior Individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower In scope than these covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done In quick reaction studies. (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that Is essentially unatnlyzed and unevaluated. Tl, review of IDA Documents
is suited to their content and intended use.

The work reported in this document was conducted under contract MOA 903 8 C 0103 for
the Department of Defense. The publication of this IDA document does not Indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

This Document Is published In order to make available the material It contains for the use I
and conveiense of Interested parties. The material has not necessarily been completely
evaluated and analyzed, nor sublected to formal IDA review.

I~ @ In Institut, for Defense Analyses

iThe Government of the United States Is granted an unlimited license to reproduce tOh 1

Approved for public release, unlimitled distribution. Uneiaslied.I~es0

I --'-"---'°- --, --- 0

Form rpovc,REPORT DOCUMENTATION PAGE omI o.0 aS

Pubicrq~tug uinen~rthi clletit f ifunea ieem"dnvwg ap = = ;womeinlding the time for reviewing limajctice. atchjing sniatig daa sn.ore.

soloinend uming; dw dat needed. AMn completing am rvein cen iom d commnts rooding tfs burden en or my odmisspect of thi
colecdatlonhxgin mcjinagediin for reducing this burean. to Wmington fleadqumt services. Vi-curt f-r lnflbrme Opeuiimia and Repots, 12 15 Jeffin
Davism sihay Suit. 1204. Arlington, VA 22202-4302 end to thin Offce of Mehnement end Budget, Nporwa& Reducticn Projec (0704-0188). Wmingto. DC 20M03.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

R April 1990
Final

, TITLE AN SUBTITLE 5. FUNDING NUMERS

Reuse in Practice Workshop Summary MDA 903 89 C 0003

T-R2-597.2

6. AUTHOR(S)

James Baldo, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

NUMBER

Institute for Defense Analyses (IDA) IDA Document D-754
1801 N. Beauregard Street
Alexandria, VA 22311-1772

9. SPONSORING ON1TORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONIORING AGENCY

Strategic Defense Initiative Organization (SDIO) REPORT NMBER

SDIO/ENA
The Pentagon, Room 1El 49
Washington, DC 20301-7100

11. SUPPLEMENARY NOTES

12.. DISTRIBUTlON/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Public release/unlimited distribution. 2A

13. ABSTRACT (Maximum 200 worda)

IDA Document D-754 summarizes the Reuse in Practice Workshop which was held at the Software
Engineering Institute. The objective of this workshop was to assess the current state of the practice of software
reuse and provide recommendations to the research and user communities to enhance software reuse. The
workshop focused on four areas of software reuse: domain analysis, implementation, environments, and
management. Position papers from several of the attendees are included as part of the document.

14. SUBJECT TERMS 15. NUMBER OF PGES
software reuse; domain analysis; implementation; environments; black box reuse; 224
domain modeling; robust; reusable components; traceability. 16. PRICE CODE

17.SECUkdTYCLASqlF1CATlON1 IS.S0MRJP1TC ASSIPICATION 119.$FSECURITY ..ASIFICAT7ON 20. LairrATION OF ASRCT
OF rePora OFTHS PAE OF ABnSMC AUnclassified Unclaseifled Unclasified I AI

NSN 7540-01-280.55W 0 m0d RM ,. 2M
byS-o ANS ShL ZW

IDA DOCUMENT D-754

I

REUSE IN PRACTICE WORKSHOP SUMMARY

James Baldo, Jr.

AccesSion For
Ti9IS GRA&I

April 1990 DTIC TAB
UzirtnnOunced
Justificatio

Distribution/
Availability Codes

JAvai l iand/orDist I Special

IDA

0 INSTITUTE FOR DEfENSE ANAL' SES

Contract MDA 903 89 C 0003
Task T-R2-597.2

0

Preface

IDA Document D-754, Reuse in Practice Workshop Summary, was prepared for the

Strategic Defense Initiative Organization (SDIO) in response to tasking'contained in IDA Task

Order T-R2-597.2 under contract MDA 903-89-C-0003.

This document is the result of a workshop held in Pittsburgh, PA, 11-13 July 1989. The

objective of the workshop was to assess the state of the practice of software reuse. Software reuse

practice was evaluated in t-.e following areas: domain analysis, implementation, software

environment support, and management. However, due to the workshop program committee's

objective to produce results that were detailed enough to have impact, other software reuse topics,

for example software reuse libraries, were not included.

The document contains an executive summary written by the author, summaries of

working groups written by the chairpersons and rapporteurs, and a collection of position papers

submitted by the workshop attendees. It should be noted that the summaries and position papers

do not necessarily reflect the views of Institute for Defense Analyses (IDA), Software Engineering

Institute (SEI), Association for Computing Machinery (ACM), or the Strategic Defense Initiative

Organization (SDIO).

The author would like to thank Sylvia Reynolds for her editorial advice and assistance.

V

Acknowledgments

The author wishes to thank the many people who assisted in organizing and running this

workshop and the sponsoring organizations, IDA, SEI, SDIO and the ACM. Without them this

workshop would not have been possible or successful.

A great amount of credit for this workshop goes to my co-chair Chris Braun. Her keen

insight into the working group selections and her heavy effort through e-mail messages, phone

calls, position paper reviews, and meetings, were key to the successful organization of the

workshop.

The SEI is to be commended for their efforts in overcoming a disaster the weekend before

the workshop. Power to the SEI building, the originally intended site of the workshop, was lost for
0

an entire week due to the flooding of a basement that housed their electrical generators. Sholom

Cohen of SEI managed to obtain another facility and make arrangements in record time for

necessities such as food and overhead projectors. Sholom handled all the local arrangements for

the workshop in superb fashion.

The keynote speakers, Will Tracz and Ted Biggerstaff, set the momentum of the workshop

through keynote addresses that both motivated and framed the discussion and generation of ideas.

Both Will and Ted assisted Chris and I by providing helpful suggestions with respect to the

organization of the workshop.

Also, many thanks to the working group chairmen and rapporteurs. LtCol. Charles Lillie

0 (chairman) and Terry Bollinger (rapporteur) of the Management Working Group, Dan Hocking

(chairman) and William Novak (rapporteur) of the Environment Working Group, Ted Biggerstaff

(chairman) and Kyo Kang (rapporteur) of the Domain Analysis Working Group, and Will Tracz

(chairman) and Stephen Edwards (rapporteur) of the Implementation Working Group.

vii

And most importantly thanks to the attendees who devoted three days to discussing and

generating information on software reuse.

Program Co-Chair

James Baldo, Jr.

Viii

Executive Summary

The Reuse in Practice Workshop was held at the Software Engineering Institute, in

Pittsburgh, PA, 11-13 July 1989. The objective of this workshop was to assess the current state of

the practice of software reuse and provide recommendations to the research and user communities

to enhance software reuse. The workshop focused on four areas of software reuse: domain

analysis, implementation, environments, and management.

Forty-eight people attended the workshop: twenty-two from the research community;

twelve from government; and fourteen from industry (see Appendix C for names and addresses of

attendees). The research community consisted of universities and Federally Funded Research and

Development Centers (FFRDCs). The federal government was represented primarily by the

Department of Defense (DoD) and other industry representatives were in attendance.

Will Tracz and Ted Biggerstaff started the workshop with keynote addresses. The central

theme of Will Tracz's keynote address was, "Where does reuse start?" he defined software reuse

as:

...the process of reusing software that was designed to be reused. Software reuse is

distinct from software salvaging, that is, reusing software that was not designed to be reused,

furthermore, software reuse is distinct from carrying over code, that is, reusing code from one

version of an application to another.

Will structured his keynote address by discussing the three P's of software reuse: Product,

or what we reuse; Process, or when do we apply reuse; and Personnel, who make reuse happen.

Will elaborated on each of these in his keynote address with the goal of identifying issues

surrounding software reuse and relating this information to the theme question, "Where does reuse

* start?" The complete text of the keynote address is provided in Appendix B.

0

0

Ted Biggerstaff's keynote address focused on domain analysis. Ted's central theme was to

describe domain analysis and domain modelling and their relationship to software reuse. Domain

analysis is used for the following:

a. Black box reuse;

b. Reuse with modification;

c. Harvesting reusable components;

d. Aiding understanding;

e. Capturing technological methods (intellectual property); and

f. Aiding training.

Ted also emphasized that an important attribute of domain analysis is to provide human

understanding. He explained domain modelling based on an example of a window manager for a

computer workstation. Ted finished his talk by describing current research activities at the

Microelectronics and Computer Technology Corporation (MCC) in domain analysis.

The workshop was composed of four working groups: domain analysis, implementation,

environment, and management. Each group identified issues in their area based on current state of

the practice for software reuse and provided a potential approach to the issues or provided

recommendations that the research community should address.

The Domain Analysis Working Group identified the need for a general domain analysis

model that would support a foundation and context for the practice of software reuse. The group

generated a domain analysis model called the Pittsburgh Workshop Model of Domain Analysis.

The model divides a domain into three parts: problem space, solution space, and mapping between

the two. Basically the model represents a problem space in terms of product features (e.g., a

relational data base management system), underlying principles (e.g., the relational algebra), and

relationships between product features and principles (mapping between relational data bases and

hierarchical data bases). The solution space is described in terms of design criteria, design -

x

S

alternatives for components, architectural information about a specific target system, constraints

among the architectural components, and the implementation components with all of their

associated architectural commitments.

The Implementation Working Group was concerned with producing reusable software

* components that are robust, reliable, understandable, and easy to use, admittedly a difficult goal.

In an attempt to consider this goal, the group concentrated on defining and refining terms and

processes associated with using domain analysis information. In addition, the Group focused on

* the generation of parameterized modules that could be reused with a high degree of confidence.

The group defined two models as a basis for building reusable software components: a Process

Model for creating parameterized components and a Conceptual Model. The Process Model

* describes a sequence of steps, using domain analysis information to derive parameterized software

components base on the Conceptual Model.

The Conceptual Model for reusable software components is based on three ideas:

* Concept - what abstraction the component embodies;

0 Content - how that abstraction is implemented; and

* Context - the software environment necessary for the component to be meaningful.

A simple mapping of these ideas to Ada may help assimilate the model: the concept might

become a generic specification, each separate content might become a different body for that

specification, and contextual decisions might be represented as the formal generic parameters in

the ipecification.

The Environment Working Group examined the software engineering process to identify

changes that would abet reuse and map those changes to current software engineering

environments. The group identified the following software engineering approaches that need to be
0

integrated into the environment:

a. Functional rapid prototyping with reusable components;

b. Process for identifying potential candidates for reuse;
x

Xi

0

c. Methods to evaluate software components for reuse; and

d. Capabilities to physically retrieve software components from a library.

The group noted that a reuse environment must support automated traceability of a

component through the requirements to the executable object. Traceability is important for a user

understanding of the component's design and implementation, since it captures the context and the

constraints of the development process. This understanding assists a user of the component in

reusing it on another application.

The Management Working Group agreed that existing reuse technology is being inhibited

from practice based on current software management and policy structures throughout the

industry. The reason for this probl _m is based on a lack of understanding by management of "how"

and "why" software reuse could benefit the software development process.

To facilitate and encourage software reuse in the short-term, the group made several

recommendations, such as demonstrating reuse technology on a project, providing incentives for

reuse on contracts, and education and training. For the long-term, the group recommended better

technical and administrative support for reuse in the lifecycle work products other than code, such

as designs, specification, and test data. They also recommended updating or developing

regulations and standards to address reuse explicitly.

In summary, the workshop groups provided the following key observations and products:

a. A domain analysis model, which attempts to address the domain problem space,

solution space, and a mapping between the two;

b. A proposed conceptual model for software components and a process model for

developing and using reusable software components, based on the conceptual model, was defined;

c. Extensive analysis of the software engineering environment with respect to support of

software reuse; and

d. Identification of management issues inhibiting software reuse and recommendations to

increase software reuse in the lifecycle work products.

Table of Contents

1. SUMMARY OF DOMAIN ANALYSIS WORKING GROUP 1
1.1 INTRO D U CTION ... 1
1.2 A DOMAIN MODEL ... 1
1.3 ISSUES AND NEEDS ... 6
1.4 RECOMMENDATIONS AND RATIONALE .. 8

2. SUMMARY OF IMPLEMENTATION WORKING GROUP 10
2.1 INTRODUCTION AND SCOPE .. 10
2.2 R ESU LT S ... 10
2.3 CONCEPTUAL MODEL FOR SOFTWARE COMPONENTS 11
2.4 EX A M PLE ... 13
2.5 PARAMETERIZATION PROCESS MODEL .. 14
2.6 ISSU ES/N EED S .. 16
2.7 RECOMMENDATIONS .. 17
2.8 RECOMMENDATION RATIONAL .. 17
2.9 STATE OF THE PRACTICE .. 18

3. SUMMARY OF ENVIRONMENT WORKING GROUP 20
3.1 INTRODUCTION ... 20
3.2 STATE OF THE PRACTICE ... 20
3.3 ISSUES AND NEEDS ... 21
3.4 ROLES AND RESPONSIBILITIES .. 22
3.5 ENVIRONMENT TOOL CATEGORIES ... 25
3.r RECOMMENDATIONS .. 28

4. SUMMARY OF MANAGEMENT WORKING GROUP 29
4.1 INTRODUCTION AND SCOPE ... 29
4.2 ISSUES AND NEEDS ... 29
4.3 RECOMMENDATIONS - NEAR-TERM ... 30
4.4 RECOMMENDATIONS - LONG-TERM ... 31
4.5 RATIONALE FOR RECOMMENDATIONS .. 32

APPENDIX A WORKSHOP PROGRAM AND GROUP COMMITTEES 33
APPENDIX B WHERE DOES REUSE START .. 36
APPENDIX C WORKSHOP ATTENDEES ... 47
APPENDIX D WORKSHO POSITION PAPERS .. 57

xiii

Kyo Kang
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

1. SUMMARY OF DOMAIN ANALYSIS WORKING GROUP

1.1 INTRODUCTION

The potential ubiquity, incomplete understanding, difficulties, and cost of software reuse

indicate the need for a foundation and context for the practice of software reuse. While there are

several approaches to reuse, each of them can be supported by domain analysis, which can make

a contribution to the needed foundation and context. Therefore the Domain Analysis Working

Group focused on the formulation of a general domain analysis model to provide guidance in real-

izing that support.

1.2 A DOMAIN MODEL

The main result of the Domain Analysis Working Group was a model of domain

analysis called the Pittsburgh Workshop Model of Domain Analysis (or PWMDA). The

central idea of this model is that a given domain (e.g., the domin of data base management sys-

tems) contains three parts:

" a problem space,

" a solution space, and

• a mapping between the two.

The problem space is a network of: 1) target product features (e.g., a relational DBMS);

2) the underlying principles (e.g., the relational algebra); 3) analogies (e.g., tables as an analog of

a relational DB); and 4) relationships (e.g., the relationship or mapping between

relational DBs and hierarchical DBs).

1

The solution space contains five general classes of elements: 1) design issues or criteria

that represent key questiors distinguishing between classes of designs or architectures (e.g., "What

is the organizing principle of a DBMS system?"); 2) the specific decision alternatives associated

with each issue (e.g., for the question in [1], the alternatives are relational, hierarchical, network,

or object-oriented); 3) an architectural component containing the knowledge currently specified 0

about the target system (e.g., it is relational); 4) constraints among the architectural components

(e.g., if a network DBMS is chosen, some form of indexing support is required); and 5) the imple-

mentation components with all of their associated architectural commitments (e.g., an implemen-

tation package for b-trees, used to implement the indexes of the DBMS).

The architectural component may vary in its complexity from a simple assertion about the

design (e.g., "DBMS is relationally organized") for highly abstract components, to a detailed pdl

specification for highly concrete components. Each component is thought to have a rich substruc-

ture that includes architectural patterns, specs, test data and constraints. The constraints which are

not drawn explicitly in the network of Figure 1, establish design dependencies among architectural

components such that a design decision at one point may influence or restrict a design decision at

some far removed point in the solution space network.

The solution space network is composed of partially independent islands or clusters. Each

such island may be attended to in a (mostly) arbitrary order during the design process, restricted

only by the ordering dependencies imposed by the constraint relationships between decisions scat-

tered among the various islands. (See Figure2.) Within an island, the decisions may be ordered by

the structure of the issue-decision-architecture relations.

Figure 3 illustrates the nature of a domain island at the lowest level of detail within the

solution domain. In this figure, the architectural components near the top of the island contain

abstract algorithms while those near the bottom are the actual code components.

The mapping is the relationship between the features and principles in the problem domain

with the issues, decisions and architectural components in the solution domain.

2

o. 0:D# D3 1 Do 07 D8 D9

D 0 0 0 0
000

A4 A 00 0 constraint
Qo 0 00 0

50 00
0 0

0 00 0
0 00 0 11040 00 D151

I - Issues Imp ementation 0 0
D - Decisions component 0 0 0
A - Architectural 0

Components 4
Mapping

Solution Domain

1 Keaures

elationships
Analogies

Problem Domain

0 Figure 1: Pittsburgh Workshop Model of Domain Analysis

3

Hier rchicalN r ReI tional betOiet

0 0
0 0 00

0 0

0 0

0S

%j 0

Figure 2: Solution Domain Islands (High Level) for DBMS Domain

4

Sort

(Abstract Template)

I
Small 1: Memory Availability? Large

Memory Memory

In-Place Copy SortSort

I: Size of List?

Bubble Sort Quick SortI

Bubbleso I Quick Sort
Implementation Implementation I

Figure 3: Lower Level Island In solution Domain of DBMS

5

1.3 ISSUES AND NEEDS

The working group defined a model of domain analysis (i.e., PWMDA). Some of the areas

that need further investigations are:

• The model represents a problem space in terms of product features, underlying princi-

ples, and relationships between product features and principles. One of the issues has

to do with generality and applicability of this model. There could be domains where a

different model (e.g., entity-relationship model) might be more appropriate to repre-

sent the problem space than the proposed model. Although the group felt positive about

the model, all agreed that it needs to be completed and applied to a number of domains

to validate the applicability.

" The proposed model is far from complete. The types of relationships must be identified

(for the "elements" in the problem space) and representations of the "elements" (i.e.,

issues, decisions, and architectures) in the solution space must be detailed. Although

the model provides a good starting point, a substantial amount of effort still needs to

be invested to complete it.

" Another area to investigate has to do with specification and documentation of the "ele-
0

ments" in a domain model. For example, different specification may be needed for

code templates than code components that are used without instantiation. The context

in which a template can be used must be specified and documented. For each element

type of the domain model, what and how to specify and document the elements need

to be investigated.

6

S

Domain analysis encompasses a number of systems and, therefore, can go across project

boundaries in a corporate environment. Also, the results of an analysis must be incorporated into

system developments at different projects. This raises a number of project management/organiza-

tional issues. Some of the issues discussed at the workshop are:

• Domain analysis is believed to require a very large up-front investment.1 This cost is

amortized over a number of system developments. The producer of a domain model

makes a large investment and the users of the model benefit. Often, the producer and

the users of a domain model do not belong to the same organizational entity (e.g.,

project), and the problems that can occur in this case are (1) how to transfer cost to the

user organizations, or how to give incentives to make the investment and produce

domain models, and (2) how to manage and maintain the library containing domain

models and artifacts.

* Various infra-structures (e.g., an organization specialized in domain analysis) were dis-

cussed but no specific recommendation was made. The group felt that an infra-struc-

ture must be created considering such factors as the corporate structure and the culture.

" In order to effectively utilize domain models in the software development, a systematic

approach should be employed during the development. However, the existing life-

cycle models (e.g., DoD 2167A) do not address domain analysis and application of

domain analysis results in the development. Domain analysis, library management,

1. The experience by the Domain Specific Software Architecture (DSSA) Project at
the SEI does not support this view. They could develop a reusable software architec-
ture within the original development schedule without any extra cost. Their approach
Is somewhat different from the one proposed by the working group in that they extract-
ed a reusable architecture from one system. They expect to evolve this architecture
through applications.

7

and domain model application activities should be incorporated into the development

life-cycle.

Another concern raised was that many of existing policies and development culture

mitigate against the development of reusable assets and the population of library. Bud- 0

get constraints and time pressures often prevent one from studying a problem with a

broader perspective.

1.4 RECOMMENDATIONS AND RATIONALE

The Domain Analysis Working Group made a set of recommendations S

to address some of the issues raised at the workshop. Each recommendation

is described below along with the rationale behind the recommendation.

DoD should fund prototype creation to explore the domain anal- 0
ysis model.

The domain analysis model proposed by the working group is
far from complete. A large investment is expected to be
needed to complete the model, develop a prototype, apply the
model to a realistic domain, and validate the concept. Govern-
ment, especially DoD, is expected to make a substantial gain
from this approach, and we recommend that DoD fund proto-
type creation to explore the concept.

" For each domain analysis, state:
objective or purpose, •

deliverables (concrete),

dear termination or completion criteria, and

scope (boundary). S
Since domains (e.g., horizontal/vertical domains) are inter-
related, where (breadth) and when (depth) to stop a domain
analysis are not always clear. We strongly recomnend that the
purpose, deliverables, completion criteria, and scope be
defined prior to the analysis.

0
8S

Plan for maintenance of the domain model

* A domain model changes as we gain more experience with the
domain and with the model. The knowledge gained from the
application of the model must be incorporated into the model
and maintenance of the model should be an on-going activity.
A maintenance plan with allocation of necessary resources
should be developed for each domain model.

Domain analysis should explicitly define the mapping between
the problem space and the solution space.

The purpose of domain analysis is to analyze how the prob-
* •lems in a problem space are addressed by the solutions in a

solution space. Mapping between the problem space and the
solution space should be explicitly defined in the model.

9

Will Tracz
IBM SID MD 0210
Owego, NY 13827

2. SUMMARY OF IMPLEMENTATION WORKING GROUP

2.1 INTRODUCTION AND SCOPE

The implementation working group consisted of three industry, two academic, one gov-

ernment, and five research consortium (SEI) members.The major focus of the group was to define

and refine terms and processes associated with using domain analysis information for the genera-

tion of parameterized modules that could be reused with a degree of certainty as to their validity

and effectiveness. S

A conceptual model for software components was proposed and a process model for

developing and using reusable software components, based on the conceptual model, was defined.

The group also focused on potential extensions to Ada that would support such a software
S

reuse paradigm. These included extending the type model and paraneterization mechanisms.

Finally, the group discussed the role inheritance plays in software reuse noting the differences

between type inheritance and code inheritance.

This summary presents a rough outline of the formal models developed by the working

group. A full technical paper refining the formal models is under development by several members

of the working group. A copy of this paper is available by contacting the working group leader at

the address above. S

2.2 RESULTS

The working group strived to define a formal basis for the development and application of

reusable software components. To this end, a conceptual model for reusable components was dis-

cussed and a process model for creating parameterized components, based on the conceptual

10

S

model, was defined. It was assumed that an application domain or business area could be suffi-

ciently defined to warrant analysis, design, and development of software consisting of parameter-

ized modules/objects/components that allowed the rapid creation of new systems (through reuse)

within that problem space.

2.3 CONCEPTUAL MODEL FOR SOFTWARE COMPONENTS

The conceptual model for reusable software components was an outgrowth of the Con-

cept/Context model initially proposed by Tracz in his dissertation work at Stanford. The model,

referred to as the 3C model (Concept/Context/Content) is based on defining three facets of a soft-

ware component:

(1) The "concept" behind a reusable software component is an abstract canonical

description of "what" a component does. Concepts are identified through require-

ment or domain analysis as providing desired functionality for some aspect of a

system. A concept is realized by an interface specification and an (optionally for-

mal) description of the semantics (as a minimum, the pre- and post-conditions)

associated with each operation. An Ada package specification with its behavioral

semantics described in Anna is an example of a reusable software concept.

(2) The "content" of a reusable software component is an implementation of a con-

cept, or "how" a component does "what" it is supposed to do. The basic premise

is that each reusable software component can have several implementations that

obey the semantics of its concept. The collection of (28) stack packages found in

Grady Booch's components is an example of a family of implementations for the

same concept (a stack).

(3) The "context" of a reusable software component is 1) the environment that the

concept is defined in ("conceptual context"), and 2) the environment it is imple-

11

mented under ("contentual context"). It is very important to distinguish between

these two types of contexts because different language mechanisms (inheritance

and genericity) apply differently to each. Furthermore, these two contexts clearly

distinguish between type inheritance and code inheritance.

One can use type inheritance to describe the concept of a software component in terms of

the operations and types found in another software component (what we are calling its concept).

In other words, by using inheritance one can describe a new concept in the context of an existing

concept. At the conceptual level then, the new concept "is a" specialization (subtype, or subclass)

of the parent concept. Aggregation of concepts is accomplished through multiple inheritance.

Parameterization or genericity also applies to concepts, but its use is normally associated with

passing data or furnishing contextual information such as the type of data or data structure being

manipulated (operational context). In the 3C model, parameterization and inheritance play differ-

ent roles at the conceptual level.

Code inheritance may or may not be used in an implementation. One need not observe --

conceptual relationships to access operations that may prove useful for the implementation of a

software component. There are two separate contexts that apply to an implementation of a software

component a visible context, one that the user can manipulate (operational context), and a hidden

context, one the developer has chosen to use in the actual implementation (implementation con-

text).

Interestingly enough, both the operational context and implementation context present

opportunities for variations. A software component's operational context is established by the user

when, at instantiation or run-time, actual parameters are supplied for formal generic parameters.

The implementation context is usually not visible to the end-user of a software component and

established at build time. The component developer imports a specific software component or

module whose operations are invoked by that particular implementation. But, given the environ-

ment defined by the 3C model, it is possible that several implementations could exist that satisfy

12

the semantic and syntactic properties of the module or component being imported or inherited by

41 the developer. Furthermore there is no reason why certain aspects of the implementation context

cannot be tied directly to the operational context. For example, if the user specifies that "fast,

bounded" stack of integers is desired, then the stack package's implementation, might import a list

* package that has been implemented as an array, rather than a linked list.

One should note that while it is often the case that the concept and content of a component

share the same context, the context of an implementation often subsumes that of the concept and

* extends it with performance trade-offs, hardware platform, operating system, algorithmic, or lan-

guage dependent contextual information. An example of a parametric conceptual context is the

type of element to be stored in a generic stack package (an instantiation parameter). An example

of a semantic conceptual context is describing a stack in terms of a deque where certain operations

are renamed and others are hidden. An example of an implementation's operational context is a

conditional compilation variable that selects between UNIX and DOS operating system calls. An

example of a component's implementation context is the importation of a list package (which may

have several implementations).

2.4 EXAMPLE

The example used for discussion by the working group was the concept of

sorting. The sorting concept can not be described without a context2 .The context used to

0 describe the concept of sorting includes a list of elements that have a partial order on them (a char-

acteristic of the elements in the list). Therefore the context associated with sorting concept is the

2. Note: All concepts and contents have a context In fact one of the most common
problems programmers face with trying to reuse previously written software is
determining the assumptions made by the original developer. These assumptions
often encompass the contextual Information that is buried In the interface or
implementation and point out the need to separate the context from the concept
and content of a reusable software componentl

13

data and data structure being sorted. This data structure must have certain properties associated

with it, that is, its context can, in turn, be described in terms of properties of its elements - that a

linear order relationship is defined on them. This is an example of a concept (sorting) whose con-

text (lists) is itself a concept that has a context of the linear order relationship on its elements. Note

also. the linear order relationship can be satisfied in many ways (e.g., less than, greater than, is a

member of). These are all examples of the conceptual context of the sorting software component.

Focusing now on contentual context, ther. ,n be several implementations of lists (e.g.,

linked list, arrays, or files), therefore the content or implementation associated with the concept 0

can take any number of forms based on different contexts. Similarly, there exists several sorting

algorithms, each perhaps more suited for different implementations and attributes of the data (e.g.,

nearly sorted data), each having different run-time performance and resource utilization character- 0

istics.

The selection of an implementation, or the content of the concept is determined by trade-

offs in context. Clearly, knowing the characteristics of the type of data structure being manipulated

will lead to more efficient implementations. This can result in the population of a reuse library with

several efficient implementations of the same (parameterized) concept, each tailored to a particular

context. At design time, a programmer could identify the concept and define the context it is being

manipulated under based on requirements or operating constraints. At implementation time, the

programmer could instantiate an implementation of the concept with the conceptual contextual

information plus any other contentual contextual information necessary.

2.5 PARAMETERIZATION PROCESS MODEL

The parameterization process model describes the sequence of steps for using domain

analysis information to derive parameterized software components based on the 3C conceptual

model. One should recognize that domain analysis information can be gathered top down or bot-

tom up. Top-down domain analysis starts with an entity-relationship model of an application

14

domain and determines the components associated with it. Bottom-up domain analysis is based on

analyzing several existing systems in an application domain.

In general, a domain analyst 1) identifies a concept 2) determines if variations exist, 3) fac-

tors out the commonality and 4) provides selection parameters that specify the context. Altema-

tively, a concept can be generalized over a range of contextual values. It becomes an economic

issue and implementation trade-off as to how many implementations are associated with each con-

cept. Clearly, one general purpose implementation might lead to certain inefficiencies, therefore,

several implementations, separated and selectable by context is often desired. A concept may have

several implementations, each spanning a subset of the possible solution space bounded by the

contextual information associated with the concept.

The process of developing reusable software components based on the 3C conceptual

model (the process of separating concept from context, content from concept, and context from

content) may be described as follows:

(1) "Separating Concept from Content"

* Analyze an application domain. Recognize commonality of some func-
tionality within an application domain.

* Use commonality to define a concept.

* Isolate differences or variations of the functionality.

• Isolate differences or variations in possible implementations of the
functionality.

* Record implementation issues for later use.

0 Define an interface to the concept in the form of an Abstract Data Type.

* Define the semantics of the concept as pre- and post- conditions (as a
minimum).

(2) "Separating Concept from Context"

" Use difference to define a context of the concept.

" Given a concept and its context, iterate and generalize the concept by
expanding the context.

15

" Given a concept and its context, iterate and refine the concepts and its
context. Continue until the concept and its context are defined in terms
of basic concepts (hopefully a set of which are in the reuse library).
Note: Inheritance type hierarchies are useful in expressing certain con-
cepts in terms of related concepts.

" Refine the interface to the concept, if necessary, taking into account
contextual information.

* Refine the semantics of the concept, if necessary.

(3) "Separating Context from Content"

" Define the context of the content. Determine the implementation vari-
ations and dependencies (e.g., operating system, hardware, or compiler
dependencies).

* Define a context of interest for the concept.

* Define a context of interest for the content.

" Implement variations of the concept according to trade-offs on perfor-
mance and resources with respect to the context of interest.

* Verify that the content (each implementation) matches the concept.

2.6 ISSUES/NEEDS

The reuse issues addressed by the working group focused on populating a reuse library

with robust and reliable reusable components that are easy to locate, understand, and use. The need

for sufficiently adaptable, portable and re-configurable software was felt to be addressed by using

parameterization to separate out the aspects of software that make it not reusable (implementation

dependencies, i.e., contextual information embedded in the implementation). The number and

types of parameters, as well as efficiency issues were also recognized as playing crucial roles in

determining the "usability" of the reusable software. Application generators, the modularization

of parameters (parameterized parameters), and expert system assistance (e.g., AMPEE in CAMP)

were cited as possible approaches for controlling complexity.

16

2.7 RECOMMENDATIONS

The working group suggested the following as recommendations for future

activities in the field of software reuse:

(1) Ada 9x should consider adding package and procedure types to support the devel-

opment of reusable software in Ada.

(2) The Concept/Context/Content conceptual model should be refined and discussed

in the programming community in the large.

(3) Application domains should be selected for domain analysis and the generation of

parameterized modules developed and documented consistent with the parame-

terization process model.

2.8 RECOMMENDATION RATIONAL

Motivation for the recommendations can best be summarized in the words

of three of the individuals who attended the workshop.

(1) "There exists no good conceptual basis to apply to software reuse." -- Bruce Bar-

nes, NSF The 3C model provides a good conceptual model for the development

of reusable software with a formal foundation in type and category theory.

(2) "Understanding depends on expectations based on familiarity with previous

implementations." -- Mary Shaw, SEI. One of the failures of software reuse is that

the expectations of the user of the reusable software do not meet the expectations

of the designer of the reusable software. By explicitly defining the context of a

reusable software component at the concept and content level, and formally defin-

ing its domain of applicability, the user can better select and adapt the component

for reuse.

(3) "Domain analysis is building up a conceptual framework, informal ideas and rela-

17

tions; the formalization of common concepts". -- Ted Biggerstaff, MCC. Domain

analysis is the key to identifying and specifying reusable software modules (con-

cepts). The parameterization process model is an approach for organizing and rep-

resenting this knowledge based on clearly defined relationships stated in the 3C

conceptual model.

Finally, it was the general consensus of the group that as the number of parameters in a

module increases, the ease of use decreases. Therefore the introduction of package types as Ada

generic formal parameters is desirable as an approach to organizing parameters.

2.9 STATE OF THE PRACTICE

The working group observed a varying degree of reuse technology being incorporated by

industry. This broad spectrum of reuse activity can be summarized as follows:

(1) "No planned reuse."

Software reuse is done on an informal, ad hoc3 basis by salvaging
software from previous projects.

(2) "Pilot projects."

A reuse pilot project is underway that includes studying reuse
literature, generating guidelines, and developing a small set of
components for reuse.

(3) "Informal Reuse."

Software is identified by projects or departments as being reusable.
Informal guidelines are set up to provide a minimal degree of
documentation and testing for entry into the reuse library.

(4) "Corporate Support."

Upper management has made a commitment to applying software
reuse by providing resources and incentives to develop and maintain
reusable software repositories that comply with existing reuse
guidelines. Reuse and deposition quotas have been set on new

3. Odd Hack is perhaps a more appropriate term.

18

projects.

So far, only a handful of companies have made significant commitments to reuse (e.g.,

IBM and GTE). Most other companies are either just starting pilot projects to evaluate reuse tech-

nology, or are evaluating results from them. There have been some less than successful projects in

some companies, partially due to lack of critical mass and discipline, underestimating the cost of

reuse, overemphasizing the creation of reuse tools, or lack of understanding of the technical issues

associated with developing reusable software.

19

William Novak
General Electric

Resident Affiliate
Software Engineering Institute

Software Methods
5000 Forbes Avenue
Pittsburgh, PA 15213

3. SUMMARY OF ENVIRONMENT WORKING GROUP

3.1 INTRODUCTION

The primary objective of a study of support environments for software reuse is to identify

the changes in the software engineering process required to support software reuse, and the result-

ing changes required in the software development and maintenance environment. This objective 0

arises from the fact that it is the software engineering process which defines the activities to be

supported by an environment and set of tools. Since this objective is too broad to satisfy in the

course of a single workshop the Environment Working Group tried to lay the groundwork for 0

approaching the problem.

3.2 STATE OF THE PRACTICE

A very brief synopsis of some aspects of the current state of the practice

in software reuse is summarized as follows:

" (Re)use of utility routines is common (i.e., math, window, menus, sorts, etc.)

" Stand-alone systems are (re)used often (i.e., compilers, databases, etc.

" Reusable software is concerned with planned reuse of components4 different from sta-

4. The term component was selected as the standard term by the working group, rath-
er than others such as resource, asset, artiac, part element, or module. 'Component'
has two senses: an all-inclusive meaning throughout the life-cycle, and a limited
meaning as being only executable code; the former sense is the one intended. The
connotations associated with the other terms were either pejorative or unclear.

20

ble (e.g.math) routines and less than stand-alone systems.

• Current use of reusable components is local rather than remote/distributed.

* Code reuse is the only type practiced (as opposed to other life-cycle components)

a Ad hoc reuse is more common than engineered reuse.

This overview of current practice provides a context in which to discuss the development

of reuse environments.

3.3 ISSUES AND NEEDS

In order to address the issue of how best to support developers using reusable software,

the process needs were identified. Some of the most significant changes/additions to the software

engineering process which result from software reuse are:

In order to address the issue of how best to support developers using
reusable software, the process needs were identified. Some of the most
significant changes/additions to the software engineering process which
result from software reuse are:
• Identification ofpotential candidates for reuse: This step will become an intrinsic part

of many phases of the software life-cycle, since many life-cycle deliverables have the

potential to be reused.

* Evaluate and select appropriate components to be reused: In the same way, at many

phases of the life-cycle the set of available reusable software components must be eval-

uated and selected for incorporation into the system being developed.

* Retrieve candidate components for inclusion in the new system: After evaluation and

selection the components must be physically obtained for use in the taiget system.

One of the factors which affects the nature of a software reuse support environment is the

21

paradigm under which reuse occurs. Different names for this have been published in the literature,

but the same divisions often recur.

" Constructive: Most common, with systems built using some existing (code)parts, and

software assembled using standard connection techniques (e.g.,pipes, etc.)

" Adaptive: Design components with high-level parameters for both procedure sand data

(as in object oriented languages)

• Generative: Top-down approach that generates tailor-made components from tem-

plates based on requirements schematics/rules.

3.4 ROLES AND RESPONSIBILITIES

The software engineering process defines the activities and the roles which an environ-

ment must support. The primary roles identified are those of the producer of components, the user

of components, and the manager of components (or library administrator). The following are lists

of the activities which are performed in the process of reusing software from the points of view of

these three roles.

From the point of view of a user of reusable software components there is a well-defined

set of steps which begins at the moment that the possibility of reuse exists. The steps are: 1) Iden-

tify a set of possible components, 2) Understand the function and constraints of each component,

3) Evaluate each member of the set of components, 4) Select the best component for the applica-

tion, 5) Retrieve the component, and 6) Integrate the component with the other application ele-

ments

Use of Components
a. Analysis (of requirements)

22

0

(1) Identify initial functionality and performance requirements

(2) Identify, understand, evaluate, select, and retrieve reusable components. Nego-

tiate requirements based on reusable components (and adapt)

(3) Identify, understand, evaluate, select, and retrieve reusable components for pro-

totype

(4) Develop a functional prototype system

* (5) Trace requirements to design

(6) Adapt design to use components

b. Design (of solution)

(1) Identify, understand, evaluate, select, and retrieve design components

(2) Prototype and compare alternate designs

(3) Transform requirements components into design components

c. Implementation

(1) Identify, understand, evaluate, select, and retrieve code components

(2) Prototype alternative implementations for comparison

(3) Trace design elements to requirements and to code

d. Test

(1) Use test cases stored with components in the library

e. Maintenance

(1) Improve training and understanding by maintainers through the domain model,

better available information on the system

(2) Software problems handled through the reusable library system and propagated to

23

other users

In general, component producers provide reusable components, documentation, test plans

and cases, initial classification information, and fixes and enhancements for the components.

Production of Components _

a. Identification (through domain analysis, application development, and harvesting from

existing inventory)

b. Engineering for reuse (includes documentation)

(1) Using guidelines for development and implementation

(2) Metrics to determine component's performance and other characteristics

(3) Developing components from scratch or harvested from existing software

(4) Specific to one application or generic across many library paradigm (Constructive,

Adaptive, Generative)

Validation and Verification

a. Include review/participation by the domain expert

b. Testing for context sensitivity

Submission to the Library

a. Producer certification (may also be done by library)

b. Standards for design methodology, documentation, coding, etc.

Rapid Prototyping

(The following responsibilities and associated activities fall to the component man-
ager, or library administrator.)

Management of Components

a. Distribution

b. Training in library use

24

c. Configuration management of library

d. Registration

e. Classification/organization schemes for the library contents

f. Cataloguing of the library components

g. Reviewing the submissions to the library

h. Testing/Certification of library submissions

i. Security and analysis of the library contents for viruses and tampering

j. Safety/Backups/Integrity of the physical library data

k. History/Metrics/Accounting of library usage

1. Results of domain analysis

3.5 ENVIRONMENT TOOL CATEGORIES

A set of broad abstract categories was defined to encompass a range of reuse environment

support tools and methods. These top-level categories are:

a. Library procedures

b. Analysis methods

c. Guidelines, standards, and policies for both component production and evaluation

d. Cataloguing methods

e. Search mechanisms

f. Retrieval mechanisms

g. Physical storage

In defining the activities and tool categories one recurring idea was the importance of

25

being able to provide the user of a reuse environment with automated traceability from an execut-

able component to the design, requirements, and other information associated with that compo-

nent. One of the major reasons for this is the ability to understand the context and constraints which

influenced the development of the component so that these decisions and rationales may be re-

examined in new circumstances when a component is reused.5

The following environment tool categories are further subdivided to detail some of the

specific support which would be required for a reusable software library system based on a con-

structive paradigm. These categories are not directly cross-referenced with the roles defined earlier

due to the large degree of overlap (i.e., analysis methods are used by producers in validating com-

ponents, by library managers in accepting components, and by users in testing components prior

to use in application systems). Rather, they simply address environment support for 1) system/

component production tools, 2) library tools, 3) domain analysis tools, and 4) management tools.

System/Component Production Tools

a. Component construction/adaptation/generation

b. Component production "guidelines/standards/policies"

c. Requirements tools

d. Design tools

e. Analysis methods and tools

f. Traceability tools

g. Expert systems

Library Tools

a. User Interface

5. See the results from the Domain Analysis Working Group for further details In this
regard.

26

(1) Education (on-line help, training, tutorials, etc.)

(2) View/examine components (to determine appropriateness for an application)

(3) Traceability between all life-cycle products associated with the component

(4) Search mechanism (to locate relevant components)

b. Component Submission

(1) Component evaluation tools (metrics on component suitability)

(2) Data extraction tools (to partially extract cataloguing information)

(3) Component data entry support

(4) Tagging mechanisms

(5) Security/virus protection

c. Physical data retrieval mechanism

d. Storage (physical security and data integrity)

e. Library Management

(1) Security/classification

(2) Cataloguing

(3) Analysis

(4) Configuration management

(5) Component evaluation

(6) Library procedures

(7) Expert systems

Domain Analysis Tools

27

a. Automated Support for browsing the domain model

b. Project use of domain analysis results

Management Tools

a. Project management

b. Economic/historical collection

3.6 RECOMMENDATIONS

In the course of attempting to define a reuse environment in the context of the software

engineering process which it must support, it became apparent that the existing waterfall version

of the life-cycle loses too much information during the process (especially in terms of traceability)

and that it was inadequate. Clearly, new process models are required to properly handle software

reuse, especially the use of the new technologies anI paradigms for reuse. Process models

designed to support reuse will allow software development environments to be specifically tailored

to the process.

2

28

Terry Bollinger
CONTEL Technology Center
12015 Lee Jackson Highway

Fairfax, VA 22033-3346

4. SUMMARY OF MANAGEMENT WORKING GROUP

4.1 INTRODUCTION AND SCOPE

The overall goal of the Management Issues Working Group at the SEI / IDA Reuse in

Practice Workshop was to develop recommendations for how managers throughout the software

industry could put software reuse into practice. The working assumption of the group was that

existing methods for reusing software are already well ahead of the actual application of such

methods, and that the problem of achieving significant, consistent levels of software reuse

throughout the industry is therefore more managerial than technical.

The working group decided that the scope of the issues discussed in the group would

address the following five aspects of reuse:

a. Problems. What are the key difficulties to widespread software reuse?

b. Benefits. What are the benefits of reuse, and which of those benefits are the most rele-

vant to managers?

c. Incentives. What incentives can managers use to encourage software reuse in an orga-

nization or project?

d. Economics. What are the economics (cost issues) of software reuse?

e. Legal. What are the key legal issues that need to be solved in software reuse?

4.2 ISSUES AND NEEDS

Overall, the issue that seemed to dominate much of the discussion in the management

group was the need for a better understanding in the software community of the potential benefits

29

(and problems) of software reuse. It was felt that having an accurate, widespread understanding of

why and how reuse can be beneficial would assist greatly in promoting its widespread use.

Other issues that the group identified for further discussion included the need for.

a. Contract incentives.

b. Education and training.

c. Better measurement processes.

d. Clear-cut reuse "success stories."

e. Active work on legal issues.

f. A multi-dimensional definition of reuse; that is, one which explains reuse in terms of a

particular audience's needs.

g. Upper management and political involvement.

4.3 RECOMMENDATIONS - NEAR-TERM

The near-t-'rm recommendations for increasing software reuse in the industry included:

a. Implementation and full characterization of one or more successful, "full term" reuse

projects in which the benefits of reuse can be described clearly and unambiguously.

b. Explicit mention of reuse in contracts, including in particular the use of incentive fees

to specifically promote reuse.

Mr. Stanley Levine gave a specific example of an actual draft contract that speci-

fied incentive fees for software reuse in the Army's Advanced Field Artillery Tactical

Data Systems (AFATDS) effort.

c. Education and training. Education of certain key personnel was seen as being a partic-

ularly important initial step in promoting reuse. Two key groups are:

30

Contracts people

" Program managers

Specific mechanisms for educating these people in reuse could include

(1) Customized seminars

(2) Established courses (e.g., Defense Systems Management College, Air Force's

Bold Stroke, and others)

(3) Making managers aware of the non-cost benefits of software reuse. If most man-

agers recognize that reuse can benefit areas such as design and code quality, main-

tainability, and rapid response to customer needs, they will be more likely to

accept it as a problem-solving tool.

(4) Explicit questions on reuse during program reviews. Asking about reuse (or the

lack thereof) during a program review is a simple way to greatly increase the

awareness of the potential opportunities for reuse in a project.

4.4 RECOMMENDATIONS - LONG-TERM

The long-term recommendations of the group for increasing software reuse included:

a. Better technical and administrative support for broad-spectrum reuse - that is, for the

reuse of life cycle work products other than code, such as designs, specifications, and

test data.

b. Updating or developing regulations and standards to address reuse explicitly:

(1) Develop a reuse manager's guide.

(2) Update 2167A to address reuse.

(3) Update AFR 800-14 for reuse.

31

(4) Developing better cost models

4.5 RATIONALE FOR RECOMMENDATIONS

There was a general consensus in the group that the benefits of reuse clearly exist, and that

it is those benefits that provide the rationale for the above recommendations. Specific benefits

which could accrue from software reuse include:

a. Reduction of development costs.

b. Increases in reliability.

c. Increases in software quality.

d. Shortening of development schedules.

e. Reduction of risks

f. Responsiveness to customer needs.

g. Ability to build larger, more complex systems.

h. On-the-job education of developers.

i. Increased maintainability

j. Increased security.

It was observed that many or all of these benefits are only potential, and that poorly

planned reuse could result just as easily in losses as in gains of the desired qualities. Like other

software technologies, reuse is no panacea; only by increasing an overall awareness of when and

how to build and use reusable components will reuse become a significant part of the software

development process.

32

0

APPENDIX A

Workshop Program Committee

James Baldo Jr. - Workshop Co-Chair

Chris Braun - Workshop Co-Chair

Sholom Cohen - Local Arrangements

Working Group Members

Domain Analysis Working Group

Ted Biggerstaff - Chairman

Kyo Kang - Rapporteur

Edward Beaver

Patrick Caroll

Ernesto Guerieri

Barbara Hignite

Kenneth Lee

Jim Perry

Mary Shaw

Implementation Working GrouR

Will Tracz - Chairman

Stephen Edwards - Rapporteur

Bruce Barnes

Sholom Cohen

Liesbeth Dusink

John Goodenough

33

Larry Latour

Spencer Peterson

Chuck Plinta

Ruth Rudolph

Ruth Shapiro 0

Environment Working Group
Dan Hocking - Chairman

V1Iliam Novak - Rapporteur

Harley Ham

James Hess

Beverly Kitaoka

Constance Palmer

James Solderitsch

Terry Vogelsong

Paul Wilbur

Management Workina Group

Charles Lillie - Chairman

Terry Bollinger - Rapporteur 0

Gregory Aharonian

Dennis Ahem

Richard Armour

Brian Baker

Richard Fairley

Robert Holibaugh

Harry Joiner

Stanley Levine

James Lund

34

Rod Moyes

* Philip Palatt

Spencer Peterson

S3

APPENDIX B

Where Does Reuse Start

Will Tracz
IBM SID MD 0210
Owego, NY 13827

OWEGO@IBM.COM or TRACZ@SIERRA.STANFORD.EDU

Preface

The following is a transcript of the keynote address for the Reuse in Practice Workshop

sponsored by IDA, SEI and SIGADA. The workshop was held in Pittsburgh, PA at the Software

Engineering Institute, July 11-13th, 1989. The goal of this talk was to establish some common

vocabulary and to paint a broad picture of the issues related to software reuse.

Overview

Software reuse is the type of thing some people swear by. It is also the type of thing that

some people swear at. Software reuse is a religion, a religion that all of us here today pretty much

have accepted and embraced. The goal of this talk is to question the foundation of our faith - to test

the depth of our convictions with the hope of shedding new light on our intuitions. I do not claim 0

to have experienced divine intervention. You don't need to take what I say as gospel truth. I believe

in what I say, but what you hear may be something different. Again, let me encourage you to dis-

agree - to challenge the position I have taken on the issues I will be presenting. Before I proceed 0

further, I need to qualify software reuse by providing a definition.

Software reuse, to me, is the process of reusing software that was designed to be reused.

Software reuse is distinct from software salvaging, that is reusing software that was not designed

to be reused. Furthermore, software reuse is distinct from carrying/over code, that is reusing code

from one version of an application to another. To summarize, reusable software is software that

36

was designed to be reused.

The major portion of my talk will focus on examining the rhetorical question, "Where

does reuse start?"

Introduction

If I were to ask you, "Where does reuse start?", your reply might be, "What do you mean?

That seems like a pretty vague and nebulous question!"

I agree, so I have done a little top/down stepwise refinement and broken the question up

to focus on three areas - the three P's of software reuse: product, or what do we reuse, process, or

when do we apply reuse, and finally personnel, or who makes reuse happen. I guess I could have

called it the three W's of reuse: what, when, and who.

"Why is this an important question?" you might ask. The first answer that comes to my

mind is that if you would like to build a tool to help reuse software, it would be reasonable to know:

1) what you were trying to reuse, 2) when you would be doing it, and 3) who would be using it.

That is one reason, a pretty good reason, but not the only reason for asking the question "Where

does reuse start?" Rhetorically, if one could understand the ramifications, implications and eco-

nomic justifications of the answer to the original question, "Where does reuse start?", one would

better be able to answer the question "Where should reuse start?" and "What needs to be done to

make it happen?" This is the real question I think we are here to answer.

Product

0 If one examines the question of "Where does reuse start?" by focussing on the products

being reused, one could ask "Does reuse start with code?" There is no denying that software reuse

generally ends with "code". But, this still is a pretty broad statement. After all, code could be

0 source code, object code, a high level language statement, a function, a procedure, a package, a

module, or an entire program. The issue raised then is "What is the granularity of the code that you

want to reuse?" The larger the granularity, the larger the "win" is in productivity. The overhead for

finding, understanding and integrating a reusable software component needs to be less than design-

37

0

ing and writing the code from scratch. This supports the argument for the reuse of higher granu-

larity objects such as software packages, modules or classes.

Just as we could debate the granularity of the object being reused, one could argue about

the level of abstraction that is being manipulated. Does reuse start with a design? A design is a

higher level abstraction compared to an implementation. Let me emphasize that the advantage of

starting reuse from a design is that a design is at a higher level of abstraction than an implementa-

tion. Or, in other words, a design has less implementation details that constrain its applicability.

This brings out a point made in a recent paper I have been writing called "Software Reuse

Rules of Thumb". In it I propose two general rules of thumb for software reuse: 1) to separate con-

text from content and concept, and 2) to factor out commonality, or to rephrase this second rule a

bit, to isolate change. If one applies the first rule of thumb, a program design, say at the detailed

logic level, should have absent some (but not all) of the contextual information that will be sup-

plied at implementation time. That is, the implementation issues, such as specific operating system

or hardware dependencies, are neither part of the content, which is the algorithm or data flow nor

part of the concept, which is the functional specification. I will address the second rule of thumb,

factoring out commonality, later.

Before proceeding, I would like to emphasize the importance of representation, especially

from a tool perspective. Remember I stated earlier that one of the reasons for looking for an answer

to the question of "Where does reuse start?" was to provide a rational for building tools to assist

in the reuse process. This implies that we would like a machine manipulable reusable design rep-

resentation. This is not easy! But, I believe the state of the art is now evolving to a point where

there are results of software reuse starting from design. The projects, that I am aware of, have been

at MCC, with the DESIRE system, and at Toshiba, where in the 50 Steps per Module system, they

are working on an expert system to automatically generate C, FORTRAN or Ada from low-level

design data-flow charts. Furthermore, they claim success in reverse engineering existing software

by synthesizing data/flow diagrams for potential reuse.

38

Continuing our analysis of the question "Where does reuse start?", could reuse start with

a program's specification? By specification, I mean a statement of "what" a program need's to do,

not "how" it is supposed to do it. There is a simple answer, yes, in limited contexts, program spec-

ifications can be reusable. But research in automatic programming tells us that this is a hard prob-

* lem to extrapolate outside of narrow domains.

Speaking from personal experience, we at IBM in Owego have developed some reusable

avionics specifications. When I say specifications, I mean MIISTD/2167 System Requirements

* Specifications (SRS). They are highly parameterized documents full of empty tables and missing

parameter values. The systems analyst, in effect, programs a new module by specifying the values

in the tables of the SRS document. An application generator then reads the document and builds

* the data structures necessary to drive the supporting software.

Completing the waterfall model, we can ask the question on whether reuse can start with

a problem definition (requirements). This is an interesting question. One might ask how? One

could reason that if the same requirements can be identified as being satisfied by certain previously

developed modules, then clearly those modules are candidates for reuse. Well that is a big if. It is

significantly dependent on the traceability of requirements to specifications, the traceability of

specifications to design, and the traceability of design into code and, also into test cases, and doc-

umentation.

Here is where a hypertext system's information web is ideal for linking these artifacts

together. With a hypertext system, you can walk the beaten path to find out what code to reuse.

But, there is a catch. As Ted Biggerstaff has repeatedly stated, there is no free lunch. You have to

pre/engineer the artifacts to fit into the network, and spend the time and effort to create the links.

Finally you need to somehow separate the context of the objects from the conten One mechanism

for achieving this goal is through parameterization. Parameterization is a way to extend the domain

of applicability of reusable software. Parameterization allows a single module to be generalized

over a set of solutions.

39

To summarize, the issue we have been exploring related to the question of "Where does

reuse start?" is really the question "What software artifact does reuse start with?" Part of the

answer lies in the fact that we know that software reuse generally ends with the reuse of code.

Where it starts depends on: 1) how much effort we want to place in developing the reusable artifact

that we want to begin with, 2) how effectively we can link it to an implementation, and 3) (maybe

not so obvious) how effectively we generalize the implementation.

There is a fourth dependency having to do with the process of software reuse. This is topic

I will address subsequently. First I would like to reflect on the generalization issue of an imple-

mentation. One must recognize that as we progress down the waterfall model, from requirements

to implementation, each artifact adds more detail. An implementation is one instantiation of a

design. There could be several implementations of a design just as there could be several designs

that satisfy a specification but that have different performance and resource attributes. The key is

factoring out the commonality by separating the context from the concept and content. The con-

cept becomes the functional specification. The content becomes a template or generic object. The

context becomes possible instantiation parameters. We have identified some of the dimensions and

implications related to which software artifact to start reuse with. I have concluded that code is a

safe place to start and is, in most cases, the place one ends up. I also have mentioned that hypertext

is the way to establish the traceability between requirements, specification, design, tests and imple-

mentation.

Process

Turning to the software development process, one could observe that most software reuse

starts at the implementation phase. One could modify the software development process to include

a step where, at implementation time, one would look for existing software to save having to write

new code that would do the same thing. With a little luck, this usually works. But with a little fore-

sight, this usually works better. How often is it the case that the code one wants to reuse has to be

modified because either it was not implemented to exactly fit the new context it is being reused in,

40

or it was not implemented to provide a parameter for adapting it to a different context, or the design

was such that it placed unnecessary constraints on the implementation? If the software designer

had not placed the (somewhat) arbitrary design constraints, then the implementation could be used

as is.

Therefore, with a little foresight, reuse might better start at design time. The implementor

could then leverage off the functionality of existing implementations. This is where the bottom-up

aspect of reuse meets the top-down functional decomposition aspect of most design processes. One

could argue that object oriented design would eliminate this problem. Let me say that object-ori-

ented design helps reduce the problem of the design not meeting the implementation, but parame-

terization still is the key for controlling this process.

One could just as easily extend the same argument for looking for reuse opportunities at

design time, for the same reasons, to the specification and requirements analysis phases of the soft-

ware life cycle. Again, by identifying earlier on in the software development life cycle, what is

available to be reused, trade-offs can made in the specifications, or designs can be tailored to lever-

age off the existing software base.

Let me now introduce somewhat of a new phase in the traditional waterfall model that has

been added explicitly to support software reuse. I define domain analysis to be a generalization of

requirements analysis - instead of analyzing the requirements for a specific application, the

requirements of a generic application are quantified over a domain. Applying my two rules of

thumb: commonality is factored out and context is separated from concept and content. Reusable

objects are identified, and their context defined.

If one recognizes that the software development life cycle needs to be modified in order

to inject software reuse technology, then, relating to personal experience, reuse opportunities and

potential can be identified at code review time, or at design review time. If one looks at the Pro-

gramming Process Architecture used in IBM, one can see these criteria called out as being integral

parts of the inspection process.

41

But then again, instead of reuse being addressed during the software development effort,

maybe reuse could start as an after thought (project follow/on). After one pass through the software

development life cycle, the second time through one can begin to see the commonality between

applications. Quoting Ted Biggerstaff's rules of three "If you have not juilt three real systems in

a particular domain, you are unlikely to be able to derive the necessary details of the domain 0

required for successful reuse in that domain." As a side point, there is a second rule of three.

"Before you can reap the benefits of reuse, you need to reuse it three times." The empirical evi-

dence I have seen to date bear this out. 0

A better choice for where reuse should start is at the beginning of a project (project start

up). Here, the software development process can be defined, reusable software libraries can be set

up and standards as well as tools developed. To share with you again my personal experience, in

one large Ada project, A Computer Integrated Manufacturing (CIM) effort involving 350K

SLOCS, the project had a PRL - Project Reuse Lead. He was responsible for sitting in on all design

and specification reviews to identify commonality between subsystems and support the communi-

cation and application of reuse technology. Because of software reuse, factoring out commonality,

the size and development effort of the project was reduced by over 20%. This is a successful exam-

ple of where reuse started at the beginning of a project.

But, then again, maybe reuse could start at the end of a project (project wrap-up). I am

reminded of the General Dynamics approach for developing reusable software related to an early

version of the DARTS system. Here, after a project was completed, and before the design and

development team was assigned to a new project, they locked everyone up in a room and wouldn't

let them out until they developed an archetype of the system. That is, they recorded how and what

to modify in the system so that it could be reused in the future.

While this is one approach for developing reusable software, it seems like putting the cart

in front of the horse. But, then again, it is reasonable, upon the completion of any project to identify

likely components to add to a reuse library.

42

Finally, we are all in this for the bottom line. Let me state my version of the Japanese soft-

ware factory's motto: "Ask not what you can do for your software, but what your software can do

for you." It makes sense, dollars and cents, to capitalize on existing software resources and exper-

tise. But, you need to develop a business case to justify the additional cost of developing reusable

software.

To summarize, the issue we have just explored related to the question of "Where does

reuse start?" is really the question "Where in the software development life cycle does reuse start?"

Where it starts depends on 1) how one modifies the software development process to identify

opportunities for reuse, and 2) how one either modifies or extends the software life cycle to identify

objects to make reusable. The bottom/line is that software reuse is a good example of software

engineering discipline.

Personnel

Turning to the last dimension I identified related to the question of "Where does Reuse

Start?", we will focus on the key players in the reuse ball game. The first player to come to bat is

the programmer. Does reuse start with a programmer? Most programmers are responsible for the

design and implementation of software. If they can identify a shortcut to make their job easier, or

to make them appear more productive to their management, then they probably will be motivated

to reuse software. But, while programmers might be inclined to reuse software if it was fun, or it

was the path of least resistance, or if they are told to, the real issue is "Who is going to create the

software to reuse in the first place?" There needs to be a critical mass of quality software for pro-

grammers to draw upon in order for them to fully subscribe to the reuse paradigm! So, how do we

bootstrap the system?

Maybe managers can instill a more altruistic attitude on their programmers. This, of

course, becomes a question of budget cost and schedule risks associated with the extra time and

effort needed to make things reusable.

Reuse is a long term investment. Maybe the expense of developing reusable software

43

should be spread across a project! With reuse raise to the project level, there would higher potential

for a larger return on investment, plus more insight and experience in prioritizing what should be

made reusable. Again, there is no free lunch, A project manager would have to authorize the cost.

But project management is generally rewarded for getting a job done on time and under budget.

There is no motivation for making the next project look good. This shortsightedness needs to be

resolved with top management.

Indeed, this is the case, both here and abroad. At NIT, GTE, IBM, TRW, to name a few

companies, reuse incorporation and deposition objectives are being set. For instance at NT, top

management has set a reuse ratio goal of 20% on all new projects, with a deposition ratio quota of

5%. That is, all new programs ideally should consist of at least 20% source code from the reuse

library and all new programs should try and deposit at least 5% of their source code to the reuse

library (subject to the acceptance guidelines, constraints, and ultimate approval of the Reuse Com-

mittee).

But, upper management edicting reuse to happen doesn't insure success. That is why there

is a strong argument for reuse to start in the classroom (educator). The education system, while it

is good at teaching theory, might embrace a little more of the engineering discipline and teach soft-

ware building block construction or composition of programs. Courses are needed in domain anal-

ysis, application generator construction, and parameterized programming, as well as the

availability of pre-fabricated, off/the shelf components structured to facilitate the construction of

new applications in a classroom setting. Again, critical mass is needed to bootstrap the system.

Besides the reuse mind set, maybe reuse should start with a tool set (tool developer). Per-

sonally, I do not see the need for exotic and elaborate tools to support reuse. Although, I am biased

towards using a multi-media hypertext system for the capture and representation of domain knowl- •

edge, which I consider crucial to understanding what and how to reuse software.

Have I run out of people who possibly could start the reuse ball rolling? Have I saved my

heavy hitters for last? Should reuse start with the customer? It depends on the customer! A large S

44

customer, like the Department of Defense, could easily demand certain reuse requirements be met.

Of course, there might be a small initial overhead cost associated with getting the ball rolling, but

once the system was primed, once application domains were populated with certified, parameter-

ized, well documented, reusable components, then long term benefits could be reaped.

I have added the salesperson to this list of individuals who could play a role in determining

where reuse might start. The reason is that if a salesperson knows the marketplace and knows

potential customers, then they could play a key role in building the business case necessary to jus-

tify the capitalization of software for reuse.

Finally, I have added the systems analyst as being a person who possibly could be instru-

mental in starting software reuse. I admit, he joined the team late, but he turns out to be a clutch

player. Back to the issue of putting the horse in front of the cart. Before you can reuse software,

you need software to reuse. Who are you going to call? The domain analysts! Who are the most

qualified individuals in an organization to 1) analyze a problem domain, 2) determine logical sub-

systems and functions, and 3) determine the contents or requirements of modules and anticipate

the different contexts that they might be applied under? The systems analysts. They have made life

so difficult for some of us programmers in the past by providing incomplete or inconsistent or,

worse yet, too detailed specifications. This is a wonderful opportunity to work together toward a

common goal.

To summarize, the issue we have been exploring related to the question of "Where does

reuse start?" has been identifying the roles played by certain individuals in an organization related

to making software reuse happen. In retrospect, several of the key players had non-technical roles

in the game! A point that bears distinction and should come as no surpise.

Summary

In conclusion, the goal of my presentation was to bring to light issues surrounding soft-

ware reuse. To force you to question what you might have accepted on blind faith. I have probably

raised more questions than I have answered, but, that is good. Hopefully it will provide you oppor-

45

tunities for discussion. Finally, I have shown, as a wise old owl once stated, "It is not what you

know, but who, you know?" that often is necessary for success. Software reuse is no exception to

this rule. Software reuse is a people issue as well as a technology issue

40

46

APPENDIX C

Workshop Attendees

Gregory Aharonian
Source Translation & Optimization
P.O. Box 404
Belmont, MA 02178
(617) 489-3727

Dennis M. Ahern
Senior Engineer
Westinghouse Electric Corporation
Aerospace Software Engineering
P.O. Box 746
MS 432
Baltimore, MD 21203
(301) 993-6234
DAHERN@SIMTEL20.ARMY.MIL

Rich Armour
United States Air Force
HQ USAF/SCW
Washington, DC 20330-5790
(202) 694-8890

Brian Baker
Department of the Navy
Chief of Naval Operations (OP-945D6)
Washington, DC 20305

47

James Baldo, Jr.
Research Staff Member
Institute for Defense Analyses 0
Computer and Software ENgineering Division
1801 N. Beauregard St.
Alexandria, VA 22311-1772
(703) 824-5516
baldo@ida.org

Bruce H. Barnes
National Science Foundation
Information, Robotics, and Intelligent Systems
1800 G Street N.W.
Washington, DC 20550
bbames@note.nsf.gov

Edward W. Beaver
Westinghouse Electric Corporation 0
Defense & Electronics Division
P.O. Box 746, MS 432
Baltimore, MD 21203
(301) 765-3926

Ted Biggerstaff
Microelectronics & Computer Technology Corp.
9390 Research Blvd.
Kaleido II Bldg.
Austin, TX 78759
(512) 339-3600
big@mcc.com

Christine Braun
Contel Technology Center
12015 Lee Jackson Highway
Fairfax, VA 22033-3346
(703) 818-4475
braun@ctc.contel.com

Patrick Carroll
Resident Affiliate
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

48

Joel Cohen
GTE Goverment Systems Corp.
Strategic Electronics Defense Division
National Center Systems Directorate
1700 Research Boulevard
Rockville, MD 20850
(301) 294-8400
cohen-jm%ncsd.decnet@getwd.arpa

Sholom Cohen
Member of the Technical Staff
Software Engineering Institute

* Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-5872
sgc@sei.cmu.edu

Liesbeth Dusink
Delft University of Technology
Faculty of Mathematics and Informatics
Julianalaan 132
2628 BL Delft

* NETHERLANDS
betje@dutinfd

Steve Edwards
Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311-1772
(703) 845-3536
edwards@ida.org

Richard E. Fairley
Professor
George Mason University
School of Info Technology
SITE, Room 203
4400 University Drive
Fairfax, VA 22030
(703) 764-6195
fairley@gmu.vax.bitnet

49

Fred J. Foster
Staff Assistant
United States Air Force
Office of the Secretary of Defense
Director, Operational Test and Evaluation
The Pentagon
Washington, DC 20301-1700
(202) 694-2153

Ernesto Guerrieri
Softech, Inc.
460 Totten Pond Road
Waltham, MA 02154-1960
(617) 890-6900
emesto@ ajpo.sei.cmu.edu

Harley Ham
Naval Avionics Center
NAC-825
6000 E. 21st Street
Indianapolis, IN 46219-2189
(317) 351-4457

James A. Hess
Resident Affiliate
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
(412) 268-5851
jah@sei.cmu.edu

Daniel E. Hocking
Computer Scientist
AIRMICS
Computer and Information Science Div.
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800
(404) 894-3110
hocking@ainnics.army.mil

50

S

Rick Holbert
United States Air Force
HQ AFSC/PLR
Andrews Air Force Base
Washington, DC 20334-5000

Robert Holibaugh
Project Leader
Software Engineering Institute
Methods Program
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-6750
rrh@sei.cmu.edu

Harry F. Joiner
Telos Federal Systems
55 N. Gilbert Street
Shrewsbury, NJ 07702
(201) 530-8444

Kyo Kang
Member of the Technical Staff
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-6415
kck@sei.cmu.edu

Beverly Kitaoka
Science Applications International Corporation
311 Park Place Blvd.
Clearwater, FL 34619
(813) 799-0663

51

Larry Latour
Assistant Professor
University of Maine
Department of Computer Science
Neville Hall
Orono, ME 04469-0122
(207) 581-3941

Ken Lee
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7702
kl@sei.cmu.edu

Stanley H. Levine
710 Carol Avenue
Ocean, NJ 07712
(201) 544-3098

Jim Lund
United States Air Force
AFATIJFXG
Eglin AFB, FL 32542-5434
lund@uv4.eglin.af.mil

Rod Moyes
United States Air Force
OOALC
MMETI
Hill AFB, UT 84056
(801) 777-7703

52

William Novak
Resident Affiliate
Software Engineering Institute
Software Methods
5000 Forbes Avenue
Pittsburgh, PA 15213
wen@ sei.cmu.edu

Phil Palatt
Senior Staff Engineer
Dynamics Research Corp.
Systems Division
1755 Jeff. Davis Hwy. #802
Arlington, VA 22202
(703) 521-3812

Constance Palmer
Senior Engineer
McDonnell Douglas
Missile Systems Company
Dept. E434, Mail Code 0922232
P.O. Box 516
St. Louis, MO 63166
(314) 925-7930

Jim Perry
Resident Affiliate
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
(412) 268-7744
perry@sei.cmu.edu

A. Spencer Peterson
Member of the Technical Staff
Software Engineering Institute
Software Methods
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7608
asp@sei.cmu.edu

53

Charles Plinta
Mermber of the Technical Staff 0
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7771
cpp@ sei.cmu.edu

Ruth Rudolph
Computer Sciences Corporation
Defense Systems
304 West Route 38, Box N
Moorestown, NJ 08057
(609) 234-1100 x2237

Theodore Ruegsegger
Softech, Inc.
460 Totten Pond Road
Waltham, MA 02154-1960

Ruth J. Shapiro
Resident Affiliate •

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
(412) 236-6398
rjs@sei.cmu.edu 0

Mary Shaw
Professor of Computer Science
Software Engineering Institute
Carnegie Mellon University 9
Pittsburgh, PA 15213-3890
(412) 268-7731
shaw@sei.cmu.edu

54

07

James Solderitsch
Research Scientist
UNISYS Corporation
Defense Systems
P.O. Box 517
Paoli, PA 19301-0517
(215) 648-7376
js@prc.unisys.com

William L. Sweet
Manager, Industry Sector Operations
Software Engineering Institute
Technology Transition
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7706
ws@sei.cmu.edu

Will Tracz
OBM Systems Integration Division
Mail Drop 0210
Route 17C
Owego, NY 13827
(607) 751-6731

Roger Van Scoy
Member of the Technical Staff
Software Engineering Institute
Carnegie Mellon University
Pittsbu, !h, PA 15213-3890
(412) 268-7620
rlvs@sei.cmu.edu

Terry Vogelsong
Departnent of the Army
Information Systems Software Development Center
Attn: ASQBI-WRC STOP H-4 (Terry Vogelsong)
Fort Belvoir, VA 22060-5456
(703) 756-5202

55

Paul A. Wilbur
Principal Engineer
Teledyne Brown Engineering
Cummings Research Park
300 Sparkman Dr. NW
Huntsville, AL 37807-7007
(205) 726-1505

56

* APPENDIX D

Workshop Position Papers

0

57

SOCIAL AND ECONOMIC PROBLEMS
WITH DEFENSE SOFTWARE REUSE

Gregory Aharonian
Source Translation & Optimization
P.O. Box 404, Belmont, MA 02178

617-489-3727

Software reuse is not a technical problem. The current approach to
fostering software reuse, such as in the STARS project and at many companies,
is to concentrate on developing new software tools and methodologies. However,
the greatest impediments to software reuse are not technical, so that any new
tools and methodologies will have marginal impact.

Rather the problems that should be addressed deal with economics,
management, technology transfer, training, legal issues, politics, tradition,
and the continual advancements in technology. Until these issues are dealt
with, it is unlikely that companies and the DoD will ever achieve cost
reductions through software reuse.

What follows are questions concerning the non-technical aspects that have
to be answered to achieve a successful software reuse effort, be it for a
company, or the whole DoD. Unfortunately, at most sites around the country,
the answer to most of these questions is either "No", or "I don't know".

IGNORING EXISTING RESOURCES

Have the current software resources at the company been cataloged in printed
or machine readable form? Where in the company is developed software archived"

Have external sources of software resources available for reuse at the company
been cataloged? Where in the country are available software resources kept?
How aware are company programmers of external software resources?

How can these master directories be prepared? What librarian skills are
needed (for classification and abstracting)? Is there a charge number to put
someone on this project full time? What help can the company librarian offer?

How well are existing software resources being reused? How can current reuse
rates be measured, and is the information being collected?

What information should be collected for each program? Can this information
be mapped into a database schema? Should the database schema be used with
a traditional database system or an expert system, with or without natural
language query capabilities 'does the DoD have a natural language front-end
that can be reused for developing a retrieval system)?

Why hasn't the DoD (using DTIC, DACS, DARIS, ISEC, DARPA, SEI, DCA, or ESD)
funded the collation of a directory of the 10,000+ programs available for
reuse throughout the defense community? Does this mean that the DoD doesn't
want people reusing its' software?

Can software metrics be used to compare software packages providing the
same capability? How can the best mathematical library in Ada be selected
from two or three repository offerings? Does the library with the highest
quality code from a software engineering viewpoint also have the most
accurate code numerically? Does the company's reuse staff have the expertise
to-answer these questions?

58

ECONOMICS

Do the company's programmers have incentives to reuse software (are they
paid for lines-of-code, or productivity)? Are managers trained to assess
a programmer's software reuse activities?

*Do the programmers have tools to quickly perform cost/benefit analysis at
various stages of the life-cycle to know when to reuse software?

Has the company collected financial data on previous software projects to
use in cost/benefit analysis tools? What are the financial factors that

*contribute to the cost of reusing software?

How can technology be factored into or out of cost/benefits models? For
example, 1986 Ada compilers running on 10 Mhz cacheless 80286 systems run
about ten times slower than 1989 Ada compilers running on 30 Mhz cached
80386 machines.

Do the company's managers know how to create incentives for programmers to
reuse software? Are managers rewarded if they save money through reuse?

Should consultants be used to help the company's programmers acquire and
reuse software? How much should be spent on consultants, and how can their

*activities be measured to see if the company is saving money?

Do the company's managers know how to bid proposals that are based on some
estimated level of software reuse?

Is the company being rewarded by the DoD for reducing costs by reusing
*software? Do contracts have incentive clauses, and can DoD program managers
earn credit for managing programs that spend less money?

Will the company be penalized by the DoD for not reusing software? If the
DoD wanted the company to reuse software, why don't they require companies
to report on applicable reusable software in submitted proposals?

How can the DoD coordinate software reuse nationally? What does it mean to
have a national software reuse policy? Does the foundation of this policy -
the mandatory reuse of publicly funded, publicly owned software available
to everyone (even competitors) from repositories - sound marketed oriented
or command oriented? What kind of economics does software reuse impose on

0a company, or a country?

In an era of corporate restructuring and leverage buyouts, which has and will
be happening in the defense community, how can the long term funding needs
of software reuse be made compatible with the short term profit seeking to
satisfy creditors and Wall Street?

0 How can the company successfully transfer reusable software technology from
their defense activities to non-defense activities? How can DoD software
activities be channeled to fight both a military war with the Warsaw Pact,
and a economic war with Europe and Japan?

0

0 59

MANAGEMENT
0

How serious is the DoD about software reuse? They've booted STARS back and
forth, cut funding to STARS, supported parallel (and duplicative) software
reuse efforts, and haven't put a general or admiral in charge. Will the
company get in trouble for aggressively promoting software reuse?

Are the company's managers given the financial and administrative resources
to establish software reuse programs? Is upper management willing to invest
for many years before realizing any gains?

Is upper management or the DoD willing to allocating funds to have people
full-time maintaining the reuse effort at the company? If such activities
cannot be charged to existing contracts, will the company allow the activities
to be funded out of administrative funds. Money is provided for IRAD in
software - how about IRAD money for transfering IRAD software results?

Do any of the company's managers have experience to manage a software reuse *
program? Do they have the requisite training in software development,
technology transfer, cost/benefit analysis, systems analysis, applications
programming, and library science?

Is the company advertising for positions such as managers of software reuse?
Is the need for such people understood? What qualifications should this type 9
of manager have? Where in the corporate hierarchy does the manager and his
staff report to? Can a software reuse manager force software to be used on
specific projects? How absolute and how great is his authority? What kind
of supporting staff is needed?

Where is the line drawn on a software reuse staff's activities? Should they *
be a service, acquiring and handing off software on demand, or should they
use their expertise to also integrate the software and solve the problem?

Should there be a distinct software reuse group, or should their activities
be distributed across all programming groups at the company?

Have the company's programmers been surveyed to determine what kinds of
software they need and are interested in reusing? Have they also been
surveyed to acquire their suggestions on how the company can best reuse
software?

Do programmer's have permission to visit, on company time, local government
and unviersity f~cilities to discover sources of reusable software? Will
programmers be given inhouse training to transfer software technology from
domains they have minimal experience? Reusing software implies reusing.the
technology being implemented in the software. For example, defense engineers
have wasted much time and money reinventing capabilities with neural networks
that were already available in existing statistics and physics algorithms,
with which they probably have had little formal contact or training. How can
the company avoid this waste, and what kind of training will be needed?

60

AVOIDING THE N-I-H SYNDROME

Is software being used from all sources, or is the company or command being
0 parochial? Can and is other companies' public domain software be reused?

Is the Navy using any of the Air Force's software, and vice-versa? Can
NASA software be reused in DoD projects, and why are both agencies funding
software reuse environments to be use by the same contractors?

Is the testing-and-verification excuse being used to avoid reusing external
* sources of software? On the other hand, is testing and verification of

reusable software too costly for those interested in reusing software?

How about all of the disparaging gossip about repository software? Will
this discourage upper management support for reusing repository software?
For example, supposedly the official STARS editor is so large when compiled

* that it won't fit into 640K of PC memory, requiring extra memory on expansion
boards. Is this reflective of the rest of the repository software?

In an era of competitive software marketing, if a program is good enough to
be of interest to many people, it is good enough to be marketed commercially
for a profit. Does this mean that the only kind of software being donated to

9 public repositories is software of limited use to others, and therefore not
worth reusing? Will competitors try to sabotage the company by offering
reusable software that is more trouble to reuse than it is worth in savings?

Will the Ada zealots bring down plagues on the company if we minimally
translate good algorithms from Fortran and C?

LEGAL

What is the cost burden of dealing with software in public repositories that

the original developing company has partial rights to?

Does reusing software in certain configurations violate known and unknown
patents? Will companies be liable for actions of uninformed programmers?
Will companies need lawyers as part of their software reuse staff?

Who is liable for Laults attributed to acquired repository software
* components? At which point in modifying external software, does the burden

of reliability pass from the original developer to the modifying company?

How well should software be tested before being contributed to repositories?
How well can software be tested in general? Will other companies provide
access to the training data used to develop and test the algorithms that

* they have placed in the repositories?

How willing is the DoD management to support publicly available software
repositories, knowing that all of the software will quickly make its way to
Moscow?

61

~e~ai2 (kii)
Brian Baker/OP-945D6
Anna Deeds/PMS-412
156311/X28204
29 Mar 89

29/30 Mar 89 Ad Hoc DoD Software Reuse Strategy Working Group
Institute for Defense Analyses, Falls Church, Va

Position paper: Industrial Policy and Software Reuse: A Systems
Approach

Reuse is one of several modern, revolutionary, interrelated and
interdependent software productivity techniques. Productivity, not
specifically reuse, should be our overarching concern.

Reuse offers perhaps the best opportunity for evolving software
programming into a productive, hard engineering discipline based on
standard engineering designs, algorithms, and reusable code.

Software programmers should be held to the same standards of
timeliness and productivity that we hold other engineers to.

Reuse should be looked at systematically within the matrix of
evolving library technology, other interdependent software engineering
technologies, corporate micro economics, and governmental macro
economics.

Most software problems are management, not technical, problems.

Therefore, software productivity, and the subset of reuse
strategy, needs to be addressed as a management problem in the large
scale.

What is needed is an industrial policy or national strategy for
software productivity to be implemented through procurement policy.

Advanced software engineering processes and technology will
continue to be one of America's most important technological-strategic
assets.

The distinction between military mission-critical technologies
and civilian technologies is increasingly blurring.

Key questions: On what scale do we implement reuse, particularly
for complex R&D-based mission-critical systems? Should reuse be
implemented on the corporate scale, or on a governmental scale? Or
both?

page 1 of 5 pages

62

Since reuse can only be achieved through a merging of library
technology and software engineering processes, the proper scope for
reuse is probably at the corporate, rather than governmental, level.

Why should the government create massive software libraries if
0 the technology for reuse is so interdependent on internal, corporate

development processes?

It only makes sense for the government to establish libraries if
it does its own software development. It cannot and does not do this
for large-scale mission-critical systems. Perhaps governmental

0 libraries make sense for developing small-scale, mission-support
systems.

It is imaginable, and therefore possible, that software
development will someday be done using artificial intelligence with
integrated libraries and increasingly automated software engineering

* processes. If so, stand-alone, governmental libraries (or more
likely, repositories) will not be sufficient for this discipline.

Governmental libraries will probably always tend toward
obsolescence. Government does not have as much incentive as industry
for maintaining state-of-the-art libraries.

9
Particularly for large-scale mission-critical systems, liability

problems associated with GFI, verifiability and cataloging issues, and
evolving software engineering technology make governmental libraries a
monumentally complex and expensive proposition. On the other hand,
corporations have a perfect incentive to do this.

Government should not tell corporations how to reuse software or
make them use governmental libraries. If reuse makes sense, they will
do it. They do not need us to make them do this. Double-billing for
reused software should be ameliorated by increased competition and
increased emphasis on establishing productivity baselines and
measures.

As corporations continue to increase their technological and
economic resources, and merge, their political, economic and
technological power will probably eventually transcend that of many
nation states and make national boundaries irrelevant.

If the Chinese and Russians become liberal, pluralist,
capitalistic/democratic, the global free-market, capitalist economy
will inevitably lead to worldwide competition on an as-yet unimagined
scale.

*0 Future long-lived multinational corporations will probably tend
to have extremely secure, fortified, state-of-the-art, multiple

page 2 of 5 pages

63

domain-specific libraries since these libraries will probably be
indistinguishable from their software engineering centers.

Technical data libraries will be afforded the same security as
software engineering centers, probably more.

Corporate software engineering centers, including distributed
mainframe-based multi-configuration workstations, will probably be
integrated with domain-specific technical data libraries which would
be used by the software engineer in designing applications and reusing
relevant components.

Currently, software is more responsive than hardware (materials)
to changes in the threat, e.g., embedded mission-profile computers.

Since software (and associated technical data) is a significant
corporate (and national) asset, corporations will probably place a
very high price on making it available to governmental libraries.
This approach to reuse becomes expensive.

Since each corporation will have a vested interest in any library
interoperability issues (to assist teaming arrangements), including
graphical user interfaces, hypertext formats, i.e., the "standards"
issue, we should leave industry to initiate any work in this area.

Industry will probably not be responsive to governmental 0
"standards" groups in the library/reuse area but we should be prepared
to assist any work they wish to pursue.

As a preliminary suggestion, reuse libraries should employ the
card catalog principle implemented in public libraries, i.e., use
standard information block with (1) author; (2) title; and (3)
subject.

Cost-plus contracts also provide a disincentive for reuse.

Fixed-Price contracts with incentive fees (FPIF) for advanced or
mission-critical applications will only work within revised
acquisition and life-cycle maintenance policies.

FPIF contracts will only work within revised profit regulations.
Corporations should be allowed to make any percentage profit on
government contracts and be incentivized to contain costs.

The marketplace and increasingly sophisticated competition should
regulate profits, not artificial, national government policies which
may increasingly conflict with relatively unbounded international
economic norms.

page 3 of 5 pages

64

FPIF contracts are needed to force industry to treat software
programming as a hard engineering discipline. Unless we try, it will
not happen by itself.

Therefore, the government needs software engineers to draft RFPs
and evaluate proposals based on certain software engineering
disciplines evidenced in proposals.

Incentive awards should be made for software readability, clear
documentation, object-oriented programming, user-friendly man-machine
interfaces and productivity.

In conjunction with this, corporations should retain all rights
to their software, just as they would any other piece of proprietary
hardware.

Procurement of advanced, mission-critical systems should begin
with rapid prototyping and modeling by two or more competitors for
proof of concept. Focus should be on establishing stringent
productivity measures and baselines for incentive awards.

Any additional time that the rapid prototyping/proof of concept
phawould add to the acquisition process should be balanced by
shortened Full Scale Engineering Development (FSED).

During the life of a contract, productivity standards should be
increased from a baseline such that the contractor could not but help
to employ reuse or other productivity strategies.

An object-oriented programming methodology should be required for
HIL-STD 2167A. Associated with this, the government needs to train
personnel in software engineering and object-oriented programming.

Contract specifications should concentrate on performance and
functionality. Government acquisition managers must remain flexible
and open to new corporate software engineering practices if they make
sense.

After rapid prototyping, competitive FPIF leader-follower FSED
contracts should be issued.

Competitive second sourcing should be considered for long-term
full-production contracts. This applies to system hardware and
software.

Our present method of separating software development
(contractor-based) and life-cycle maintenance (government-based)
ac:ivities will probably not work for increasingly complex systems,
unless the most-likely life-cycle maintenance activity is involved
during the developmental phase.

page 4 of 5 pages

S 65

By separating these two software phases (often between industry
and government), government is in effect paying for the same software
twice: once in development, and again when it trains and staffs
in-house personnel to try to understand, and then modify, the same
software.

Government should compete long-term life-cycle maintenance just
as it does research and development.

Industrially-funded, highly-professional, governmental,
domain-specific software support and engineering centers should be
established in the field to compete with original contractors for
life-cycle maintenance of software. But the original develop.r's
library or software engineering center should be readily accessible to
governmental personnel. Good examples of governmental software
support centers are the Fleet Combat Direction Systems Support Centers
and the Marine Corps Tactical Software Support Activity.

In conjunction with this this, the government needs to train more
personnel in the software engineering discipline, e.g., send them to
the Software Engineering Institute (SEI).

Governmental research and development centers would then have a
choice between contractor-supplied and governmental (in-house)
maintenance. Major enhancements or modifications to software (driven
by operational requirements) would continue to be funded by the R&D
centers.

page 5 of 5 pages

66

* July 11-13, 1989 - Pittsburg, PA

Making Software Reuse Cost Effective
Bruce H. Barnes

* D~vsion of Information, Robotics, and Intelligent Systems
National Science Foundation

1800 G Street NW
Washington, D.C. 20550

(Internet: bbames@note-nst-gov
Tery B. Bolinger

* Contel Technology Center
12015 Lee Jackson Highway
Fairfax, Virginia 2203-3346

(Internet: terry@ctc.ciontel.com)
To be cost effective, software reuse sists of any outlay of current resources or la-

*nxistbe recognzed as havinsgthe bor hours in hopes of future reductions in
same cost and dsk charactenslics as costs. Additionally, reuse investments con-
finanaial investment. This paper sist only those outlays which do niot directly
gives an overview of a set of analyti- contribute to the development objectives of
cal mthods that are based on the the projec. They are thus a form of over-
precept that reuse is aform of in- head, at least as far as the originating

*vestment, and it descrbes how such project is concerned.
methods could pro vide a more unt-
form rational basis for cuionrkzing A project or activity which makes reuse in-
the apIcation of reuse technologies vestments is referred to in this paper as a
to the spedaic situations of develop- producer project, since it functionally has the
ers, projects, and orgardzatlons. role of suppying a reusable Oducr* to one

* or more Later projects or activities. It is im-
1. Introduction portanit to note that, by definition, a produc-

er activity does niot accrue any direct cost
The central premise of this paper is that to benefits from building reusable products.
be cost effective, software reuse must be Consumer projects are ones which reduce
recognized as having the same cost and Alsk their total developmnent costs by replacing

*characteristics as financial investment. The one or more of their development activities
rationale for this assertion Is shown graph- with the acqi~ition of a reusable product
cally In Figure 1. A reuse investment con- tha orginated In a producer project.

r 'Ro Fgue1Sotse euea.a InvestmenttDeeoI..Cttoev

MakingWF Reuse Coo Rfetv -1 B.I Cos t Bonge r

i I C67

July 11-13, 1989 - Pittsburg, PA

Very ApplilcatonOrIented COST TO REUSE
High Progaming (Per application)

I Languages - High
Medium

-Low

Rous-OrlntedVery Low

Documentation of________
Work Products C Intelgent

COMPONENT I Front-Ends
GENERALITY 1With Libraries

(Numnber
of readily r Muftl-LoI e Application
available Generic Components ~Program J

varitios I(Ada) J GeneratorsJ
of a part) _________

Code Structured Collections
Skeletons (Libraries) ofD Geoneric Components ~

5 Unstructured 11 Structured CollectionsI Collections of (Librres) of
Very E"AI Copnet CAs 1s" Components0
LOwN

LOW High
REUSE INVESTMENT (PRODUCER) COSTS

(Total cost of making parts readily
available to subsequent developers)

FIgure 2 - Cost-Based Selton of Reuse Technologies

Just as is the case in sales of commercial or projects are unlikely tosucceed in makinlg
software products, a reuse producer can see reuse an integral part of their development
a 'profit only when there are enough cus- process, since producers will be penalized
tolmers to make overhead costs of reus In. for overhead expenditures which do not di-
vestmrent worthwhile. Additionally, it Is very rectly beniefit their development needs.

Impotantthatconumer~M~e acheve From a technical viewpoint, Figure 2 shows
s0Wkai savlngs In dveloprmilt %"ne how a pocecosmrmodel of reuse
elso the number of Insiices of rems will a eue t upr nInertdve
need lo be so large tha it Is unlikely that a an aber uese to of reuse anitechoiew

net rofi canbe ~The key Idea of Figur 2 Is that selection of a
The producer/consur model of reuse Is specific reus technology should not simply
rich In both managerial and technical Implica- be a matter of personal preference, but
tWas. One obvious managerial impnpcation Is should Instead be based on an analysis of
that organizations which fail to provide the specific neeods and constraints of
some form of payback Incentives to pioduc- projects. Cost-based selection of reuse

Making Reuse Cost Effective -2- B. Bamoes, T. Boffnger_.

68

July 11 -13, 1989 - Pittsburg, PA

High 82Ii8n Ift n,
rlwrong/right/

*Wde ALU PEAMZeLEEIEWI Over ParameterlztloIn

If 11161 u' ' than Fonn a Sequential,
If l~ll) W henChar~pe = ASCII,
N fU(1+2 "rRAM~uffered = Yes;
... Operation a FindReplace,

REUSE tlewl.) .'r; BegInDelIm ='

~ilT1A1~Find z "wrong",
(Inverse of End it; ~ Raglan Replace "right";

Rese)t End If; Hge
Cose)t End It; HIoht

End~op; X\, or Not
SPromfl

LOW

Very Low Very High
(O1ne shot" code) (the "oTuring Limit")

* DEGREE OF PARAMETERIZATION

Flguaw 3 - The Liit of Paf.w tan In Reuse

technologies need niot be restricted to only rarneters that can be used to control their
*the large-scale granularity of projects; it can behavior. Intuitively, one ight tend to as-

also be appled in a fine-grained approach as surne that I performnance Issues could be ig-
a way of integrating multiple reuse technolo- nored. Increasing the level of pararneteriza-
gies into a single project. In fie-rained WP tion would nearly always lead to increases in
pications, cost-based classification of reuse Mie reusabiliy of a module. For reasonsmethods tends to lead to the selection of which can only be briefly mentioned here.

* low levels of reuse investment for cour30- thIS turns out not to be Mhe cae. Very high
nents with only a moderate likeihood of be- lvl fpaiItn oapocIng mused, and high levels of Investmnent leesopaateitonedtoapac
whenever a Sthang amakst' of oosre ac- what the authors refer to as the "Turing Eim-

tliyneeds can be dearl identiled Ito w iIs the point at which the paranle-
terization becomes so extensive in scope

*Flne-grained apication of cost methods 10 that the effective eqivalent of a general-
reus requires more specific methods for an- purpose Turing machine Is created. At best,
alozng and specifying the potential reuse a parameterization schem that has reached
payoffs of components. Figure 3 gives an mhe Turing UImt will be at least as complex as
example of such a fine-grained approach for a general-purpose programng language,
the well-Inown (and deceptively simple) coni- and could easily be far more complex; its re-

* COOt of module parameterization, In which use potenia Is thus effectively nil, since re-
software modules are made more reusable developing the part In the original program-
by Increasing the number and types of pa- rnlng language would be less costly than at-

Maldn Reuse Cost Effective -3- 8. Sarnes, T. Bollnger

69

July 11 -13, 1989 - Pittsburg, PA

High

COST TO
PARAMETERIZE

(Producer)

LOW
LOW DEGREE OF PARAMETERIZATION High

High

COST TO REUSE = p o&

(Consumer)

Low_____________________
LOW DEGREE OF PARAMETERIZATION High

Net Profit

PROFIT/LOSS
PROFILE

Net Lossw_ _ _ _ _ _ _ _ _

LWDEGREE OF PARAMETRIZATION High

PRgur. 4 - ProfftLos C ueftc fPJwntrzto

tempting to determine the set of Input pa- edge of how the problem domain varies is
rameters needed to custornize the "reusablem shown graphically in Figure 4. Because the
version of the component, cost of adding new parameters ' a a compo-
Instead, the best payoff In parameterization nent Is roughly Inear with the increase in
comes through finding combinations of pa- the number of parameters, it is obviously
rafneters whc in som wa -oove- Me beneficial to askew" the selection of parame-

mostlikly ormsof ~ablty f te apica ta infavor of those features which a for-
mtNice fomnJst as vanly mafct ing mal or Infrmiual analysis of the problem do-

disciplines have developed sets of comiple- main cIndictes aremot makey o bei asn
mentary parts which cin be adjusted and s~ atvie. W tmynobe s
combined to produce a ver wi range of obvious Is how much of a cost impact such
useful products, a good software parameter- selections can make-, as shown In 'he figure,

baton chee I on Inw te fatues a good initia selection of parameterizations
that cme chrs ne in h veaturnes can result In a substantial Inrease in the net

thatcan e amgos re te VWf OI oitailty of that reuse investment. A It-
whiae mot I oued In cne wener u e bit of explicit analysis and consideration

the ompnen Isreued i a onsmerac- of the problem domain before beginning the
parameteilztln process can thus be a high-

This Idea of Optimizing the selection of pa- ly beneficial activity, one which can make it
rameters based on the best available knowi- far more licely that a large number of con-

Making Reuse Cost Effective -4- B. Barnes, T-1oinoer

70

July 11-13, 1989 - Pittsburg. PA

Adoptive Reuse Strategy Composttonal Reuse Strategy

Si.FSr. Sr. F as Pt J Put PaS P W PaL

Roused Code - New Code Reused Code -- New Code

Hybrid Rouse Strategy Hybrid Reuse Strategy
(Using Domain Complete Pert Sets) (Using Domain Incomplete Part Sets)

Figure 5- Major Strategies for Applying Reuse Technologies

surner activities will be able to make effective er (compose) old code that is in the form
use of the part. of discrete, functionally simple modules.

These two fundamental rouse schemes can
To perform the kinds of optinzaton just do- be combined to form hybrid approaches
scribed for reuse parameterzation, a produc- which provide powerful analytical frame-
or project must be able to divide and con- works for understanding and optimizing the
quer in its analysis of how to maximize the reuse potential of a producer system.
rouse potential of a system. Figure 5 shows
one approach to the reuse version of the di- Ths paper is only a buf summary of a num-
vide-and-conquer problem. The Figure 5 ap br of technqlues and issues which the au-
proach is based on the idea that all consum- thou would ike to suggest as being impor-
er activities must deal with two types of Want in making reuse a widespread, integral
code: "old code that Is being reused to re- pat of the software ngineering process.
duce costs, and "new code whose purpose Alough some of the issues are quite coin-
is to cuo mnze the behavior of the old parts plex, there is good reason to believe that a
to met a new application. Reuse schemes oo-basesd approach to understanding, or-
may then be classified In tenms of how they giZing, and selecting reuse tochnoogies
-n*- old and new proucts to create now can provide important benefits to the soft-
systems. ware IndusMy, In both the short and long

There are two fundamental approaches to
this problem. In the adapm approach, the
support structure Is kept as stable as poss-
ble, while new code is added at the lower
levels of the structure. In the compositonal
approach, new code is used to giue togeth-

Making Reuse Cost Effective -5- B. Barnes, T. Bollinger

71

POSITION STATEMENT

Software Reuse in Practice Workshop
Software Engineering Institute

July 11-13, 1989

by

Richard E. Fairley
Professor of Information Technology

George Mason University
Fairfax, VA 22030

(703) 764-6195

Area of Emphasis: Organizational/Economic Issues

We are currently investigating incentives for reuse of Ada components
for the AIRMICS organization of the U.S. Army through a subcontract
from Martin Marietta, Huntsville to George Mason University. The
viewpoint we are pursuing can be summarized as follows:

"Suppose the technical and legal problems of reuse were solved.
What disincentives would have to be removed and what incentives
introduced to make reuse of Ada components a widespread and cost
effective practice?"

The main emphasis of our work is on issues of development
methodology, organizational structure, organizational behavior, and
economic modeling of reuse.

Although the main thrust of this work is oriented to incentives for
reuse of Ada components, issues related to methodology, organization,
and economics are similar for all types of software work products
(requirements, design specs, code, test plans) and all types of
implementation languages. We thus expect our results to be
applicable in a wide variety of situations.

In the area of methodology, we are exploring the implications for
reuse of object-oriented development and the "family of systems"
approach of David Parnas and colleagues. There are obviously strong
interactions among domain analysis, development methodology, and
implementation issues. We are attempting to take those interactions
into account. The strong interactions among methodology,
organizational concerns, and economic modeling of reuse may be less
apparent, but are equally important and in fact provide the
motivation for our interest in development methodology.

We are focusing a great deal of attention on organizational and
economic issues of reuse. In the long run, these issues may be more
difficult and more critical to successful reuse programs than the
issues of technology or methodology. We are examining issues of
organizational structure to facilitate both reuse in the small and
reuse in the large. We are also distinguishing between ad hoc reuse
and formalized reuse programs.

72

Issues of organizational behavior are concerned with motivation and
individualized incentives for reuse. We are investigating these
issues at various organizational levels, to include programmers, team
leaders, project managers, department managers, executive officers,
and customers/clients. Motivational incentives have been
investigated by others within the context of technology transfer, and
many of the results from those investigations are directly applicable
to software reuse.

Economic considerations are the ultimate test of reuse. Efforts in
technology, methodology, organization, and legal concerns will be of
little consequence unless it can be demonstrated that reuse increases
programmer productivity and/or the quality of software. We are
conducting a survey of existing cost models and software metrics

* programs to determine the current state of cost modeling for reuse.

We are also developing cost models that account for factors such as
the increased cost of developing a reusable software component, the
anticipated number of reuse instances for the component, the amount
of modification effort required to reuse the component, and the
percent of the component that will be reused in both modified and
unmodified forms.

In addition, we are incorporating factors that account for the
increased reliability of a reused component over a newly developed
component. Increased reliability has several distinct effects:
saving of the inrreased cost for developing a new component of
equivalent proven reliability, the reduced maintenance effort for a
proven component, and the psychological effect of using a component
of demonstrated reliability.

Metrics for reuse is another aspect of economic modeling that we are
examining. We are developing a set of recommended metrics to track
the time and effort required to develop reusable components,
incorporate reusable components into new systems, and support the
infrastructure of reuse libraries, reuse personnel, and reuse
histories.

The final aspect of our work involves case studies in reuse. We have
identified several reuse projects that span a variety of approaches
to reuse. We will examine these projects to determine factors that
contributed to success or failure and to determine how roadblocks and
inhibitors were overcome. Where possible, we will collect economic
data to be used as input to our economic models.

In summary, we are focusing on issues of methodology, organizational
structure, organizational behavior, and economics in software reuse.
We expect to produce a set of recommended guidelines for reuse
programs, incentives for reuse at various organizational levels, and
some economic models of reuse.

73

POSITION PAPER
REUSE IN PRACl7CE WORKSHOP

Reuse: Where to Begin and Why1

Robert Hoilbu gh

Software Engineering Institute
Carege Mellon University

Pittsburgh, PA 15213
NET: rrisei.cmu.edu

Abstract Undersanding the factors that make software artiacts
(requirements, designs, code, test plans, and

One of the main impedimens to reuse realizing its doc nt ation) reusable and applying those resources
potential for improving software prodiucivity and successfully will help to transition this promising
reliability is the large up-front investment that must be softw.= development approach into common practice.
made. The Software Engineering Insttute (SEI) was
interested in identifying the benefits of reuse to die
MCCR community, and so te S was f with d 1.2. Potental for Reuse
similar problem of how to investigate reuse without The reuse of softwar resources has the potenial o 0
making a large up-ront investmen This paper Im pro duvity by reducing or eliminating the

earmines the general advantages and disadvantages of cost of implememaon, inegraion, documentation, and

various starting points for reuse. Finally, ,e analyze testing of code. The time saved by modifying reusable

the decision made by the SM's Applications of code to fit o's application will also reduce the total

Reusable Software Components Project. effort. Fuihermoe, if a se of reusable resources is
put of a rr design. a significant amount of effort
will be saved during design and in interfacing the set of

L Background reusable components The ae spent coordinating a
design among the development staff may actualy be

1.1. Introduction the greatest overall savings from rus

The need for increased productvty and reliabity in addition to increasing productivity, reusable

ae two of the challenges t led to the formation of the resorce ca also increase the r lay of software by

Software Engneing institute (SET). Meetng te reducing the coding. interface, and documenatn

challenges is a fundaemal goal of software arran Since reusable resources have been

engineering and these challenges e being addressed deonst to be reliable, the reliability of the system

by the community at large, some DOD orga dons, under development will be increased. Reusable

and ademia. Furthermore. these problem m being resources also have the advang tha they have been
addresseby.usingewer langes andblem teng used by other developers who are noc consmined by

such as Ads and object-oriented design, by evaluting theimpli ctis a me i very qF ec1iA type of ting

curmn development tools and evironmlent, mad by deve loeh usi is a v. ete

measuring and the gthe sdoew Ii Wit inclusion of a reusabe tource in each new
dvlap Wenk in th an m niso withte t ore treby

other engineering disciplines has led to renewed interest inrasing the prbblt of exadtn any given
in the promise of software reusability fr deceasing segment of code. When a set of components which

.cycle costs and improving elibi iy. implement a larger functionality m= reused day fntzher

tSponsored by the U. S. Department of Defense

74

2

reduce inmterface and communication errors. 1.4. Large Initial Investment
Domain specific software, which solves reciring The cot for domain analysis, which includes

problems in the domain, has the potential to improve collecting: organizing, analyzing information about the
the consistency and maintainability, and to reduce the domain and representing the results, would be high, but
time necessary to complete the system. Domain the cost for constructing reusable components and tools
specific reuse implies that the components and their would be much higher. The effort for a domain

accompanying requirements and design are reused. analysis could easily be one staff yea with no
This higher level reuse promotes standard designs for guarantee that common functions, objects, or other
systems and subsystems. Thus, the consistency of reusable resources would be identifed. The Common
systems from one generatn to the next is increased, so Ada Missile Packages (CAMP) domain analysis
maintainability of the systems is increased and the required approximately 7.5 staff-months of effort
training time for new maintainers is decreased. The (MCNIC88]. Curent estimates for the cost of
impact of personnel mnover. changing hardware, and developing reusable software indicate reusable software
other vagaries of software development am reduced by require twenty percent more effort than non-reusable
reusable designs which capture high level corporate software (MCNIC86. Furhermore, producing
expertise. The standard decomposixion of compilers reusable designs and developing reusable subsystems
and thei reusable tools, lex and yacc, are an example of will undoubtedly cost more than producing a single
this type of savings. design or single subsystem. Since there are very few

Software rmse also promotes maintainability examples of reusable designs, the cost to achieve this
because standard designs red-e learning time, and level of retusability could be very large indeed.
reusable artifact should be simple and easily Guidelines (ST.DE86, GARGA86, SOF 8ES5,
understood (MCNICS6J. When the development uses a PRESS83, STARS86] for creating reusable code have
standard design, more work can be done in parallel and been published, but we don't yet have empirical
the development schedule is shortened. Another benefit evidence that these guidelines will produce reusable
of standard designs is that the interfaces are wel code. Finally, the cost for creating a reusable
understood and work can proceed in parallel. Since subsystem of say 10,000 lines of code could exceed
many of the problems have been encountered before $500,000. The CAMP project implemented 16,000
and am resolved in the design and code, the complexity lines of co& with slightly moe than 5 staff years of
of the Problem is further redced. Again, the effont.MCNIC88] Without actually implementing a
techniques and knowledge typically taught in an system with reusable resources, we really can't
undergraduate compiler cause ar a simple example of detmin the effeciveness of the domain analysis and
the advantages of reuse. domain engineering. There is very linl. if any,

ev dthat domain analysis and domain en gi ng

1.3. A Major Reuse Impedment produce effective remuable resources. Without criteria
to determine the effectiveness of the domain analysis

If ecansodramaticallyincrseproducivityand and domain engineering, this is a large initial
reliability, then why don't we see more reuse? Thethnomeastevaluateeslt
answer is that there am ioo few examples mccinessful
reuse far government or industry to make the large up-
from inveshnn. A mmgfc apmroh woud identify 2. The SEI and Reuse
poential applicaions for mute, do a domain ailysis,

- develop M le RdbmFes and tools, crea a mas,
bed MftwaM devlopmen meftodoioy. and aply 2.1. Constraints n a Reue Investiption
t muable reOures ti nprov pluctivity and Bmue the SRI ageed with the -omendaum

liability in fum efforts in doat domain. ThM om a mad by the Defeats Scin owd n the potential
major impedime to mor uccesd ree a how m productivity paoM of mot. SmI became imerested
c dem nstre te pactcal advanta of t in =mining de cam and bewft of me, in
witut a large up-front invesuMLa dem1mug a proof of concept and in acquiring and

trnsitioning sum-d-Ute-ut muse mchology.

75

3

Therefore an SEI project was defined and executed to product oriented organization but also to research and
examine the potential of reuse for developing systems. development (R&D) orpn ations like the SEL In the

abstract, the advantages and disadvantages of domain
Init//View of Reuse analysis are reasonably well balanced.

..Inial the o Resfied th oThe advantage of beginning with a domain analysis
Inllay, the Proiect identified the forf tenial task am that it captures knowledge and experience of

areas in Figure 1. We could have defined a Project corporate experts who ae always in demand. A
coverig all four anmu. Since the CAMP projct had domain analysis uses the artifacts of previous
completed a domain analysis and was constructing deopent efforts to identify common capabilities or
components, we considerd perforing a domain features of those systems. The means for achievinganalysis in another unrelated domain. This effort these capabilities may be different for different systems,
would, however. hve required more staff nd ca r but identification of alternative methods for achieving
time than could be justified. So we had to restrict our the um capability provides for parameteruAtion and
attention to one of the four areas rather than covering flexibility in future systems. The domain analysis
the entire cycle as CAMP was doing. should identify solutions to those common problems.

- Domain Inalyas > hese common problem solutions would then be
/I\ integrated together into an architecture to solve future

S IC C system's problems Fially, the domain of interest can

a n a n be restricted to cover the market areas of a company. a
t a p a division, or a department Perhaps most important, the

lt 0 t results of domain aalysis capture the experience and
a fl I knowledge of the organization's experts. Another

U benefit of capturing corporate knowledge and

t t t experience is that this informaion can be used to train
I t i new employee The advantages of defining a domain0 t 1 0 anaysis task are strogly related to product driven

OI0 orgnizations which provide similar solutions to a
i common pmblem se.
\l/ The mai disadvantage of beginning with domain

< Libay Conatuation analysis is maidng a large up-ftmi investment when the
Figure 2-L Reuse Cycle quality of the resul s ae unknown. An orgrnization

which does a domain analysis is making a long term
investment in a particular market or business ara, since3. Where to Begin the benefits of the domain analysis cannot be realized

From our initial view of reuse in figure 1, we could until the orpmiation increaes productivity and/or
initiate a project in any of the four a .eas Before we reliability in some fute devopme. There is also no
defined this projec we examined the advantages and way to validae the results of the domain analysis until
diadvantaga of defining a project in each of thorns four the organizatim comstructs aother system. Unless the
reas. Below we describe the advantag and ormpnizat,n Mcs ts at lemt two mom systms. the

disadvtagu for each p etWi starting p cost Of a domain anlysi will probably not be
umvead. Since them have been few domain analyses,

IL Domain Analysis theme is not a luge body of limamr or knowledge on
Before defining an initial project in doamin malysis, what the outpu should be or how to perform a dommn

An organization would want o minimize the "YdLys Fnally, available drmain etatieianwyiseiesp.izi didvmm The aboltely useesm for a effeczive domain analysis.
advatages ol pem g amin the apply to iTe expertis nece y to do a domain andysis is
Orvanizaties o hen a wed defined market or Ually in short supply and may not be available.
oguI ans The av a p lylae mk t o ry w Wi tout uidace, available domain expertise, and the

pla ity to v~at t e reults. the larg up-from

76 S

4

investment neressary for domain analysis soms a very statiom, reusable resources are futed assets. The output
risky prposiim, of this component construction is concrete, so that it

The advantages and disadvantages of a domain can be measured and at least examined qualimavely by
analysis seem reasonably well balanced in the absact, the organization's experts. Furthermore, it can be
so each organmon must evaluate the risk and berefit campaed to c-mnt and previous developments to
to its bottom line. Them are some examples of die deternine how adequately it solves current and past
benefits of reuse in the dam processing industry. problems. Once again, the advantages of initiating a
(LANER84] The Japanese have also made a long term reuse effort with component construction am strongly
imvesmn in ruse and been reasonably successful. related to needs and expertise available in product
[MCNAM86] These examples are not MCCR systems, based groups
but itdoesindicatem hasreal potential for MCCR Them am significant disadvantages t
Systems. Domain analysis is iba first step in initiating a ruse effort with component construction.
constructing reusable reource and mam of these The maw technical problem is knowing what to build.
efforts am being iniiated by government and industry, This problem is similar to developing a system without
but the remsul-t are not yet available. As we gradually having a set of requirements. In today's resource
overcome the lack of domain analysis experience, and constrained world, starting development without a set
as the importance of capturing domain expertis is of requirements is extremely risky. Once again, a very
recogniz, mam domain analyses will be done, and we large up-fimt investmen is required, so the investment
will be able to justify the up-frot cost. The larg up. in cmpone construction could be 5 to 10 tmes the
from cost may always remain, and can only be justified cost of a domain analysis. (MCNIC8] Futhermore, we
by making a long tm business commitment to the don't have guidelines or validation techniques for the
domain. As time goes on, the advantages of starting reusable esomes. Finally, the construction of large-
with domain analysis begin to outweigh the grained reusable components or tools to genert lage-
disadvantages. grained components will cost even more to develop.

Initiain a ruse effort with components construction

3.. Component Constructon r a very large up-front investment and has
Sotpoent d ngs i in g aconsiderable risk because of our inability to validate theThe potentia disadvantages of initiatig a reuse resuita

effort with component construction without a domain Ti advantge and disadvantages of initiating a

analysis outweighi th poential advantages. The risk of res effort wit dsnt oninitiarn e
making a large rmme effot with copnn cosruto arent well

making a lge up-front investmet in component balancedi the absr a so we do not recommend
ca tuct*on without te benefits of a domain analysi s starting a ruse effort with component construction.
fr outweighs e pot al advantges, which apply Aner a domain analysis such an investment seems quite
mainly t a product based orgniztion. Th reasona de dis absolm necessary for rmus. An
dshowever, apply to SE as well as product organzation could, owee, consm the reusable
based groups. co mnens as pat of an existing development, basing

One advantage of beginning a reme effort with theircnucto o the results ofa domn analysis.
compent constrctmon is that the organization already n ye c onstruction asnould a y on lyccur

has the capability to deveop domain speci code. I a d om n t anl sis.

OrMizM s which develop s wm for a specift a

mak lik radar systms posse the expMi to
devel radar supot softwa. The work done in 3.3. Llbrar7 Cosuteon
domain engineiag is very similar t th work do=e in The didv- mages of initiating a s effort with
the design and coding phases of standard projects. hixrY conmttio appear to outweigh de advmtages.
Unlike domain analysis where an oqn im lacks ThM main advantage is tht we all understA the
experts they do pos the expertise to develop necessity of coUstucting a libray for reusable
detailed designs and code. resources, but if we don't have resoures 0 sm in the

Anoher advantage is tha this effort builds amsse for library, we won't be abl to recover the co t witlout
the futm. Like aning Or investments in work famhr invemem in domain Malys amd domain

77

5 0

engineering. The ability or inability to recover one's library construction outweigh the potential advantages
investment is the most significant factr in deciding to since the developer may never be able to recover the
initiate a lirary cosuction project. cost without making an even larger investment. After a

The advantage to library construction is its domain analysis and domain engineering of reusable
reasonable cost. which appeals to management. The resources library constrction has much less risk. In
construction of a library for a single division or fact, the classification of the resources which defines
compmy may not require moe than one to two staff the retrieval mechanism is derived from the domain
years of effort. Since the library could apply to all analysis. Library construction before domain analysis
domains and all projects within the company, the cost is difficult to justify unless one already has a large
doem't seem excessive. In fact, it is not unreasonable collection of reusable resources.
with appropriate planning for the library to be useful to
several divisions of a large aerospace corporation. The
key advantage to library construction is that it is 3.4. System Construction
absolutely necesary for the ultimate success of reuse. The disadvantages of initialing a reuse program by

The storage, control, and conigunation management of cvnstructing a system from reusable resources far

the requirements, designs, code., documention, and outweigh the advantages. There is great risk in

their history is absolutely necery for the developers developing a system from reusable resources without

who will apply reusable rowurce. Finally, establishing the applicability, understandability, and

management does not have a problem understanding quality of reusable resources. This risk is definitely

the need for a library, and they easily recognize its unacceptableexcept for shadow or RID projects.

applicability to several projects. Inn purpose of initiating a reuse project in system

An organization that constructs a library before they construction is to validat the con and benefits of reuse,
have identified what they will store in the hlrary may investigate ruse technology, and provide a reference

never ralize aybeneft from the library. The cost of point for future reuse. The costs and benefits of muse

domain analysis and domain engineering may prevent have not been determined empirically, and there am
management from allocating the resmuces to constauct very few examples of successful third party reuse. By

the reusable resources. The classification techniques starting with system construction, these costs and
which we most applicable to one domain may not be benefits can be determined by collecting data on the
applicable to other domaim. Unless the hrary can development. An organization can also investigate the

support multiple classification mechanisms, it may not effectiveness of the reuse tchnology which was used to

be able to sppor resources which am constructed after supply the reusable rsMces. This information is -,cry
the lbrary is impkemeued. In fat. me o the security important for constructing additional reusable

restrictions an classified or sensitive resources may resources. A project dat constructs a system from

prevent use from accessing the library. Even though muble resouces is certain to encounte unexpected
there aM veral liaiaes under co uction, the U problems and to gai insight into the solution of some
litle in the literature on guidelines and procedures for expected problems. This infonaton is very usefu for

library operation. construction of additional reusable resources and for
The recovery of hiray implemenaion costs will plarmn and scheduling other reuse development

dqed on the availability, quality, and applicability of effoM. The advantages of initiating a system
the naource stowd in the lbrary. Some orpokmons deveopment with mmuable resources can be grouped
p to place all software that they cIe t into he mp g ac experiene with new ehnology.
librar. M Uismay 0=0 a inam; cluificatioand The dindvimge of stating with system

trieval Problem became do volnm of mues ci is the risk inher in wing new and
reat more figi, and ther may be very litl upro. technology. The risk to ral plojec of using

that's ramble. Mhe disudvuages of string a reuse thirl party softwe cm be reduced by prolotyping and
efrMt with library conauct= am primarily mlatd o teiUng the componenM but this will certainly reduce
recovering the cost which is related to being able to the productivity gUn. So, it seems that nothing is maly
mrtieversources that aem to be built. gained wi summing the trustwotins of the

TMe disaidvanage of starting a muse effort with M Dow this me we am trading relbilty for

78

1 6

productivity? Any gain from productivity cannot offset LANER84 Lanergan, R and Grasso, C. Software
problems in reliability. The gum expected from muse Engineering with Reusable Designs and

can only be assured if we have reiable Code, IEEE Transaco on Software
Engiering. 10(5): 498-501, September,

Where can one obtain the reliable resources? Abstract 1984.
data types (ADT) can be purchased commercially, and MCCAI86 McCain, Ron. Reusable Software
they are guaranteed, but the gains from these ADTs will CoW.ponent Engineering, IBM, Houston,
have to be anortized over many developments. To Texas, July 1986.
show significant productivity gains on a few projects, MCNAM86 McNamara, Don. "Japanese Software
the resources probably need to be domain specific. Factories", in Prceeding of the
Wih the exception of the CAMP component ther Software Factory Forum, SEI, February,

may not be another rich and powerful set of reusable 1986.
components. The main disadvantage of building a MCN1C86 McNicholls, D., et al Common Adatm res ae rMissile Program, McDonnell Douglas
system' with reuable resources is the risk of te Asrmautics. SL Louis, MO, Air Force
technology. That is assuming the reusable resources Armament Laboratory, Eglin AFE,
exist at all. Florida. AFATL-TR-85-93, May, 1986.

In general. the disadvantages of beginning a tmuse MCNIC88 McNichoils, D, et aL Common Ada
effort with system construction outweigh the Missile Packages - Phase 2, McDonnell
advantages, and we would not recommend it. The. lack Douglas Astronautics, St. Lvuis., MO,

Air Force Armament Laboratory, Eglinof reusable reors and inhert risk to the project far AB, Florida, AFATL-TR-88-62,
outweigh the potential advantages. If an organization November, 1988.
could acquire an effective set of reusable resourms, and pRrMS3 Preson, Ed, Tsai J., Bowen, T. Post, J..
if the failure of the project to deliver a system is and Schmidt, R. Software
acceptable, then this may be a viable starting point to Interoperabil, y and Reusability
investigate reuse Guidebook for Software Qualiry

Measurement, Boeing Aerospace Co.,
* Seaule, Washington, Rome Air

Development Caw, Gr, hiss AFB, New4. Conclusion York. RADC-TR-83-174, July 1933.
In the case of the SE we could Ovro e OFE8s Ada Reability G &ielins. Softech,

disadvantages of starting with system consuction. We. Incorporated, Waham, Massachusets,
acqured the CAMP components, and we initiated a April 1985.

S projec t redto elop one of the ten missiles fom the STARS86 'STARS Reusability Guidebook V4.0,"
CAP domain analysis. This did not, however, solve STARS Application Workshop, NRL,
all of our problems. We didn't have the necessary San Diego, California, September 1986.
missile expertise, and we din't have the mea to test ST.DE86 S L Dennis, R. A Guidebook for Writing
the softwam that was constructed. Raytheon provided Reusable Soure Code in Ada',

* the missile expertise, and the Crui Missile Program Golden Valley, Minnesota, May 198 .

Office provided the Iretive Simulation Pronam for

the teting the final software. So, we initiated a
I development of a Tomahawk missile. From that
developm we learned semal imporan lemons
which we will report to the communiy low this
m10112r.

S. Bibliography

GARGA86 Gargaro, Anhony ad pWas, Frn
Ada Resabiliy Study. Computer
Science Corporati, Momustown. New
Jersey. August 1986.

0 79

0

POSITION PAPER ON SOFTWARE REUSE
Dr. Harry F. Joiner

Telos Federal Systems
55 N. Gilbert St.

Shrewsbury, NJ 07702

The issue of a practical application of reusable software has
been divided into six subissues:

1. Definition of requirements with reuse as an objectivei
2. Design of software with reusable components

Issues of reuse with and on existing systems
4. Assisting the programmer with reuse
5. Creating incentives for reuse
6. The Ada language role in reuse

As this outline indicates, much of the life cycle will be effect-
ed by the adoption of a reuse approach to software engineerina.
Just as education and practice in the hardware part of the elec-
tronics industry have changed dramatically since the days of
individually designed components, the training and procedures of
software engineering will change significantly as reuse of soft-
ware components becomes common practice.

1. Definition of requirements with reuse as an objective

The user requirements definition and analysis should be independ-
ent of implementation to the greatest extent possible. leaving
the maximum flexibility available for the engineers to determine
the hardware and software solutions. Furthermore, system and
software requirements definition should not be limited by the
availability of reusable software components any mo-F than it is
by predesigned hardware components. Software requirements
should, however, take into account the effects of reusability on
the design approach.

A valid objective that can be stated in the requirements phase is
to maximize reuse of software. Having this objective clearly
stated will be an important incentive during the earlier years of
applying reusable software. Another valid objective is to add to
the reusable components available in libraries.

2. Design of software with reusable components

Designing with reusable software components will place a differ-
ent emphasis on the software engineering effort. The use of
predefined components places greater importance on optimal use of
the engineer's toolbox and less emphasis on detailed understand-
ing of computer languages and programming techniques. Two exam-
ples of current practices that refiect this difference are seis-
mic processing in the oil industry and hardware design.

Seismic processing includes sophisticated Digital Signal Process-
ing (DSP) techniques applied to large data sets (tens of thou-
sands of time series with several thousand samples each). The
DSP is performed by using a software package which routinely
contains over 100 components, each executing one or more tasks.

80

such as band pass filtering, sorting, wavelet shaping, or other
static or dynamic corrections to the data set. The necessary
parameters and the appropriate data set are passed to each compo-
nent or module as required. The geophysicist (seismic processor)
may generally choose the order of processing and the components
to be used along with the specific parameters to be used for each
process. The processing sequence(s) will vary depending on the
quality of the data, the objectives of the survey, and form of
the presentation. The whole process can be properly viewed as a
high level design with reusable components. Some of the modules
will have been in the inventory since the mid-60's while others
will have been incorporated very recently in this rapidly de-
veloping area of signal processing. A new geophysicist will
require a period of months to become familiar with the processing
package in order to take advantage of the variations and choices
in components for filtering, migration, scaling, and other func-
tions. At present most of the required information for this is
contained the user's manual for the seismic package. The experi-
enced processor will be able to familiarize him/herself with a
new system or package in a much shorter time because of his/her
knowledge of other similar packages. The basic process is simply
one of designing a specialized DSP program using reusable soft-
ware components.

The second example is probably a more familiar one: designing
hardware from the enormous inventory of electronic parts and
processing chips available from today's manufacturers. Only a
very small percentage of a hardware system today is created from
scratch. and the hardware engineers manage to obtain the required
specifications, test data, etc. to accomplish the task from
vendor information, catalogs, and other sources.

A critical element in the design from reusable components ap-
proach is that the design may accomplish its objectives in a
different manner and that the engineer should be trained to view
the problem from this different perspective.

Issues of reuse with and on existing systems

A critical issue relating to the millions of lines of existing
code is how to determine what code is suitable for reuse and how
to approach this task in a cost-effective manner. Scme current
programs, such as the Army Tactical Command and Control System
(ATCCS), are designed to provide a source of reusable components,
but guidance for which components are to be reused and how they
are to be certified or qualified for rouse has not been defined.

The ATCCS example illustrates a large, domain-specific system
that should be able to take significant advantage of reuse in
fire support functions, battlefield planning, maneuver control,
logistics, and systems operations and interfaces. Reuse is being
designed into the system architecture with the adoption of the
Common Hardware/Software system that should insure reuse of many
of the support, communications, and system software components.
When it comes to the applications software, the situation is .PA
somewhat different. Two of the five ATCCS components (AFATDS and
MC) are well into the development programs without clear ouide-

*81

lines on what qualifies for reuse or should be designed for

reuse.

4. Assisting the programmer with reuse

A major prerequisite for widespread reuse of software components
is to obtain the active cooperation of the designer/programmer.
The principal requirements for this cooperation are:

o Ease of accessing the reusable components

o Knowledge of the requirements to make the components
work in the new situation

o Confidence that the reused component will not cause
problems

As indicated by the preceding examples, these can be overcome
with current technology and adequate training in the use of
individual reuse libraries. Although much more can be accom-
plished with databases, fully commented specifications, and
information regarding algorithms used. test results, interface
requirements, and limits of operation, a willingness to adapt
design and coding practices to maximize reuse of code from corpo-
rate and public reuse libraries will go far.

Training in college and on-the-job in how to design for reuse, in
familiarizing the software engineer with specific reuse li-
braries, and in coding practices that include interfacing with
and using the code of others will develop the skills and atti-
tudes needed to take advantage of reuse libraries as they are
created. Computer science majors are encouraged to believe that
writing code is the ultimate function of system design and devel-
opment, placing the emphasis on solution techniques that are
designed for small systems and problems. This approach also
encourages a pride in code authorship that makes it difficult to
accept the requirements for reuse of someone else's code on large
systems. Proper training in the advantages and techniques of
reuse can eliminate these problems, just as they have in the
transition from design from scratch to using off-the-shelf compo-
nents in the hardware field.

In order to perform adequate training in reuse, colleges and
universities must have access to one or more significant reuse
libraries. Students who become accustomed to operating with
these reusable components will carry over the habits and famil-
iarity with the software to their work environments.

5. Creating incentives for reuse

While training and the accumulation of reuse libraries will
provide some incentive to the aggressive software engineer, real
progress will be made only by creating significant incentives and
reducing the true stumbling blocks to reuse in practice. These
changes need to occur at two levels: those that effect corporate
external relations and those that involve the internal management

82

of software projects. The changes required are mostly political
and "cultural" in nature, not technical.

The first category of incentive (corporate external incentives)
must address corporate profitability and liability. Reuse will
become a significant factor in the near future (5-15 years) due
to its long-term savings and the increased competition for soft-
ware development work. In several areas, such as COBOL financial
packages and the Japanese software factories, reuse libraries
have become common practice and the only way to stay competitive.
They are limited now to certain restricted applications or hard-
ware/software environments, but will become increasingly wide-
spread.

Because no sianificant application of reuse is currently being
made there and reuse setup costs time and money, corporate prof-
itability in the Government sector is negatively affected for
reuse. The disincentives abound in the cost-plus development
contracts that encourage reinventing everything from the wheel to
the ballistics software package. Firm Fixed Price contracts are
even worse because the development of reusable code is more
costly, even if the long-term benefits are enormous. Government
incentives throuch extra awards for contributions to or applica-
tions of reuse could be provided as value engineering similar to
the hardware proqram. Numerous Government programs are discussing
the development of reuse libraries, but none have incentivi-ed
these projects for the corporation. Testing, documentation, and
aeneralization all add to the expense and usefulness of library
components and must be supported.

The related issues of ownership and liability for components in
the Government reuse libraries have not been addressed either. A
royalty arrangement might provide real incentives for corpora-
tions to contribute to reuse libraries, but determination of the
limits of liability must be in place at the same time. The
profit and liability must balance in a reasonable way.

When the profit motive strongly supports reuse, the second issue
of internal management support will be incenti ,ized. Significant
support for reuse by the team leaders, supervisors, and managers
of the company will enforce reuse by the designers/programmers.
Code reviews with specific attention to reusable components,
reuse competitions between project teams for contributions to and
applications of reuse, and management commitment to the extra
costs of developing and maintaining reuse libraries are all
important ways to implement a corporate reuse strategy.

6. The Ada language role in reuse

Ada supports reuse through the implementation of packages and
generics, including particular support for information hiding and
abstraction. The separation of specifications from bodies in the
package construct encourages full commenting in tha specification
for the potential user of the package while controlling access by
the user to the actual implementation in the body. Ada incorpo-
rates reuse in the language definition through the use of prede-
fined packages (TEXTIO, e.g.).

83

The commenting of the specifications could easily provide a
mechanism for supplying the potential user with his/her required
information, including test data, algorithm specification, limi-

tations on range of use, and interface requirements.

7. Reasons for attendance

I have 12 years experience in seismic processing, technical
studies and modeling (DSP), and project management. The past
three years, I have worked on Government projects, primarily in
Ada, reviewing management and technical issues. My current
responsibilities include support for the Advanced Field Artillery
Tactical Data Systems (AFATDS). part of ATCCS, in the areas of
project management, software metrics, design met"odology. and

software reuse.

The industry will accomplish the required 7-5 fold increase in
productivity over next decade or so only through the active

implementation of reusable software components, designs. and
templates. My experience indicates it can be done and, to remain
competitive, it must be done.

84

I ! ' 4

MAXIMIZING ADA REUSABILITY

Reusability has become the latest "buzz-word" of the
Ada community. It has many different conflicting
definitions. These definitions run the gamut from including

0 any design or code used more than once to only code used on
two or more widely dissimilar projects. The community also
seems to be in violent disagreement as to whether
reusability exists or is Just a myth. Some of the statements
have been; "of all the code written in 1983, probably less
than 15% is unique","very little research being conducted

* ... in Ada Reusability","40 to 60 percent of the code was
repeated","reuse factors of 85% have been reported","no
credible methodology... to provide the reuse of source code
between widely dissimilar application areas","68 to 95% of
existing software (was reused)","no reliable method of
storing or retrieving items".

The first step in maximizing reusability is to define
it. Since one major purpose of reusing software is to
reduce the effort needed to produce a program and another is
t*o reduce the cost of maintenance, the most liberal
definition should be used. Therefor reusability could be
applied to code, design, or requirements definition that can
be used more than once. The real key to maximizing
reusability is to start with the requirements definition.

Requirements definition must be performed in a manner
that will promote reusability in software design and
coding., Object Oriented methodologies seem to be gaining
favor in major Ada projects. Therefor an Object Oriented
requirements definition methodology should be carefully
employed in order to promote reusability.

The impact of not laying a firm foundation for
reusability during the requirements analysis phase of a
program can have disastrous results. An example of this can
be found in a large Ada project started in 1984. The
original contract was awarded for 33 months (20 - 300
KLOC). After 4 months the customer made an assessment that
insufficient progress was being made on the contract.

After 7 months the contractor informally notified the
customer of a potential growth in the contract. The causes
of the growth were failure to fully comprehend the scope of
the user requirement for automation, overestimation of the
contractors ability to write software in a new language
(Ada), bid errors, and misinterpretation of solicitation
requirement for quality of product for test.

85

After 9 months the customer determined that the reasons
for program growth were; contractor underbidding, an
increase in the lines of codes, and no requirement for a
functional definition. After 37 months the contract was
extended to 48 months. The contract was eventually
completed after 58 months (over 400 KLOC).

It was determined that one of the major reasons for the
program growth was the inability of the contractor to
effectively transition from a set of functional requirements
to an object oriented methodology. This resulted in a much
lower reuse factor. The contractor did manage to have
approximately 25% of the code in a common library. However,
during the last 6 months of the development the code size
shrunk. This was due to the fact that the contractor had
discovered many cases of duplicative code. It has been
estimated that over 50% of the code could have been shared
if the contractor had started with an object oriented
methodology during the requirements analysis phase.

The proposed object oriented requirements analysis
methodology is based on the identification and description
of objects, states of the objects, and processes that
transform an object from one state to another. The first
step is to structure the requirements definition activity
into several stages; object identification, object
description, object states identification, object states
description, process identification, and process
description.

Maximizing reusability starts with the identification
and naming of the objects. A generic method that does not
limit the design or implementation should be used. This is
also the stage of development in which the initial structure
of the reusability library retrieval system is determined.
Classes and subclasses of objects may have to be identified
in very large and complex systems. The retrieval system
should be structured so that it doesn't become overly
complicated.

Providing object descriptions that support and promote
reusability is very difficult. A dictionary of acceptable
and generic keywords and phrases has to be established. The
description of each object should contain its attributes.
The attributes of different objects have to be compared in
order to identify commonality of terms. The attributes
should also be analyzed in order minimize the semantic
differences.

86 0

The states that an object can exist in must be
* identified next. The states of the different objects should

be compared in order to identify additional objects that
belong to the same class. Care must be taken to avoid
semantic problems. The object state descriptions can help
if they are written using a consistent methodology.

0 The final and most critical step is to identify the
processes that transport an object from one state to
another. The process description is key to obtaining a
clear identification of equal or similar processes. These
processes will drive the design and code directly. A
library of processes with a powerful identification and

0 retrieval capability should be set up.

The above methodology for implementing an object
oriented requirements analysis approach will serve as a firm
foundation for programs that maximize reusability. Although
it maximizes reusability within the project it would also

0 serve as a basis for sharing design or code reusable
components between projects.

However, reusability will never be implemented to any
significant degree until software purchasers provide enough
incentives to the software developers. These incentives
must result in increased business and profits for the
developer that reuses software if they are to be effective.

Stanley H. Levine

Technical Management Chief for
the Project Manager of Field
Artillery Tactical Data
Systems

0
87

POSITION PAPER
REUSE IN PRACTICE WORKSHOP

Coming to Terms with Terminology for Software Reuse1

A. Spencer Peterson

Software Engineering Institute
Carnegie Melon University

Pittsburgh, PA 15213
NET: asp@seLcmu.edu

Abstract areas using English as the media for the capture and
exchange of information, as new terms constantly come

Them ae problems with the use of many of the terms into being. English, overall, is inherently ambiguous
used in software engineering when applied specrically due to the large number of meanings for many words in
to reuse. Three terms of particular interest, taxonomy, the language. The OD canries 200- definitions for the
software rem, and dOmMin analysis and Some problem word "set used as a verb and over 50 more when one
with their usage we discussed Th spCdfic problem includes its usage as a noun. Even after noting that the
witi these terms am geeralized, and several solutions OED carries many obsolete definitions for the purpose
am given, the mot important being the innmduction of of racing the history of word usage, it is no wonder
the concept of a remu process model to pIroide context why people writing natural language pmcesig
and an overall view of the potential areas of discourse programs we having difficulti.
in reae. Several new tis are proposed for future use Technical jargon suffers even more from the problem
as well as defritions that are meaningful in the context of ambiguity because terms can pick up a special
of software reuse. meaning within individual organizations that is precise S

and meaningful within them but ambiguous and
L Introduction confusing to outsider Software reu has manyproblems to solve before it becmes cmmon prsctice

It is not possible to have an intelligent discussion or p t w on procie

write a technically meaningful paper without a
vocabulary to describe the essence of the thoughts the i t tr i nm
speak or writer is attempting to convey to the listener *sta we (expelf H) don't agre on what
or reler. Tm vombulary must have two propertie& s t a res w .ts do a g onw?
Furs, it must be brod enough t describe thw it mean& much less the community at large?
range of ideas that a user may wish to convey. There
must be enough terms to describe the subject area. 2. Problems with "Standard" Terms 0
Second, the rm s in the vocabulary to be used must be Tee often used te-ms illustrate the problem with the
meaningful t both par The terms mant have vocabuay for tm. TheMmi xonomy is misused
deiio@. Futhe ro, for use in- mchnical by my authors o m and list of terms produced by
diucourus, the definitions must be few and pris doing a clficaton for a Collection of objects. This

NoMMgh to be mmuambipomu. 01ag0 is . rIet. A imnooM is the pmcess and 0
The English languge now has over 0,000 trms Fa-cedurP for crting a clasification for a group of

with dflaitiom toalling 5900000 wnams woding ob a and is fnamulamed and described in Mms useful
0o h lastest vernoio of The Oxford English Dicioary to dose doing classificaions. Biologists call a pup of

(QED) just wied (OXlORS9). Even this number of oraism that fils e o the caegorn of die fomal
terms is indequate for the eafth O discour in all

ISposonel by the U. S. Deparment of Defense.

88

2

classification unis they use. such as phylum, gens or and domaun model, all used in Section 4 and defined in

species, a taw. We can take tis wod and caom a Section 5.
new definition that fits a need in our discussions.
Section 5 contains a glomry for the new tamus andm 5di conts a f3. What can be done to solve the Problem
modifed einiios i di ia a What have we seen n the thre cases of attempting to

The wrd "software in the iam 'softares is define terms that am given above? First. we must be

not adequately defined to provide any mining to the careful not to abuse or misuse tmis that already have a

word that is poper for a usdu definition of softwue ps ise and useful definition in other contexts or areas.

muse. Softwe is de in [MEMSM] a Computer or at last admit to the non-standard usage of a term and

programs. procedures. and p sily associated provide the reader with the defnition of the trm as it is

documeation and data pertaining to the operation of a used in later iscmmse.

Computer system.a Do we look at reusing entime Second, we must agree that some terms used in

0 computer programs? The curent state of the prct e in sofiwal engineering ar inadequately or

sof wn rem is focused on reusing pieces of computer poprily defined for use in the discussion of

pograms, in particular code component Thus. i is muse, to change their definitons as necessary, and get

necessary to cend the defnion of 'software' in a the changes included in smandad glossaries and

widely used standard glossary or dictionary to get a dictionaries used in our field. Only after we agree upon

0 mendng tha is adequate for use in OUt ciisones ~ a set of terms and definitions that fits our needs and get

'software reuse'. Section 5 conains a proposed m pblishe in a widespread way can authors wrie

definition for sofh&we and wfare reu. inr prcisely and maders understand the intended

The term 'domain analysis' suffer from a simil meaning.

Problem. The word 'domain' does no have a definition Third, and most important. the fis step towards the

that is uable when o atmptn to analyze the two soiious listed above is: we need a model for the
0 words in the m. The only useMul definitionin sevea l ss avii , playa pu in remuse. A model

ditionaries is derived frm m ahie ad the wad provides the comt for using terms and for naming and

"set, a collection of elemeMs, is used. But the desribing pr-ces such that the meangs are well

software engineering community talks about things undersIod. Such a model must be absmct enough to

such as a' snz daa types. cmin os missiles not be overly consmaining and complete enough to

Sconual sysntems examples of dmains. These p e enU a fairly comp ensive approach to
things whee code component and/or whole sysnems understanding the ammy facets of software muse. Such

am developed for use on computes. But this doesm't a model is considered in the following section.

provide enough information o lead to a good
definio. So we must wy to Aualyze what we mean by 4. A Proc.m Model for Reuse

0 the term 'domain analysis' to derive a usable definiion The model depicted in Figure 4-1 on the next page is
for'domain', not to be auidered = die only approach to a process

To do such an analysis, we masn try o envision model for muse, but it illusmaes the bmefit of having
where donain malysis fts im the overal pocess of a model ad, in many ways, it rflect the SE Software

and the softw lifecycle ad deiMil PW Reum ft s view of remuse. It is not possible to
d oa pum lilthe models we derive dafs syam provide anygio ds to a compmelau decription

development What infomation a we rying 1o of the model as such a description would be the sbject
capum when we do 'domain malysis'? We wm to o and= pape in d ieo esptio
Iaa the commonality and diffaum es in th varius follin the f u enuh infomao

components and syfloms dwngd he fm ree provId eo n form uin to
desired .capabfies in the ameof Warist. With this giveco and missing In many of t r and

0 and the aswers to other mach instighal questions, it is d em given laer in Seci S.

posible ocome up wit a definition for doma that is
useful, both by iMelf ad when we craue conpound
terms such as domain analysi, domai agneeng.

89

Rom is Pk e

"~ i IM_

_ _

ICATISM

1 1, a-000-00

Flgure 4-t Rzcu Model Incorpornting New Ream Pructices

Pirt. nom die am endued by the polygon labeled erfWac that is poientiaily reusable. Adaptive
Reusezmsdcus. kt suroods a sat of activities that estgmpwfing is performed to modify the artifact for use
ought to be peffoaned by most softau engineering in a modified system or on a new platfonm. This
orgmi~iaou that do reurilg wak in a doeuaip. pie- ,cnu be improved by implementing the new
Artdfacts ftom previous developments ar m ue ud. -P-as activities given above. Domain engineering
from an cumtin bas of softarue, ad with this data provides a bmne mecbanism for mome successfully
ad o ther infornas uch mac s underlying theoy, lo can idais reources for reuse. and feedback
, 1 m ad emerging relevant mchaaokois ad theca nsre tha missing resources or those with
knowledge of persone expetienced in the domain, a problems mte cresmd or modified to fit ongoing needs.
domain aawlyas is aperformed. Its oupi= tsm primadiy Note the ue of the two tamn aWiact and resource.
a duia cdel ad a softwde .acswnw. Domdni Som would claim they at the same. We believe that
engia-w*. is performed to build and , 1 - a hbary soe a ihm may be -wo-cm, abut most are not
of rasbira utiw resoures. Projects wamng on because they do not have a high duese of rwamblhy.
applications; in the domain at kinuest cm daw upon Any dovelao poet Vac P-esults in artfats, but few
ths rsww while pertformin rawu aegiuwias 10 coadeivergo - ueomne A good suomus far rem
p a A-i a oew qiplicoo in the domsio. Feedbck. at um hv multple pieces dtha risto one wothe.

to the effectlveneus of dh o P1 .mP. agg-ad 7b=. pieces provid oUse iforbmstion that is
miin cadm ete is given so tha t doai dmt usn appfimbl a diffusum phues of t developmen
be updatd as approprim FR I po. IMi git wit misted tons"e 0 9Mmo is

Ma bomm mn of the figure ilhmmss t type of amss ad is t besis for developing a good softwa
rmsi trn is ==Bly pratced by some Soup doing llbre.
substatial software developmen work. Te aisting
softws bas is seamhed via some mechaum for an

90

* 4

S. Derived Term. and Deflnitions(A Partial (Now: an asset can be a design and the control
Glossary for Reuse) code fousig oha am inthe library wn a

Tin snu anddefniti wetake ha a daftmore powerful way. Assets am the: fundamental
uphe torm andVE deiniions Glosta of aSdaW element in a retzable software library.)

Termnoloy) IEEESSJ excpt werethe '~One of the parts that make up a system. (Note: a
marked with at M for Modified where inserted text is comnponent is some useful portion of a computer
eniclosed in a. or with a M) signifying a term tat is not proglIUL It may be subdivided int other~
defined in the IEEE draft. Other comments are coporieais)

enclosd by () and placed at the end of the defintition. coto bsat)
(1) The proces1s of extracting the essential

abstract data ripe. chiaracteristics of control by defining abstract
A data typie for which only the properties of the nichn lmsad their associated characteristics
dama and the: operations to be performed on the while diaregardling low-level details and the
data am specified, without concern for how the entite to be controlled. (2) The result of the

*data wall be represnted or how the opeations yorF in (1).
will be implemented. data absuacti

absratin.(1) The process of extracting the essntal
(1) A view of an object, that focuse on the charncteristics of data by defining data Mype and
information relevant to a pmrticular porpos and their asociated functional characteristics and

gnesthe remainder of the inormation. C2)TMw dianga-tiFg repretatioal details. (2) The
* proces of formulating a view as in (1). MR&il of the proes in (1).

adaptation data(M. domD().
Darn used to adapt a prograrx Cor component) to a The set of oinent and fiuur systems/subsystems
given installation site or to given coniins in its marked by a set of common capabilities and data.
opeaional environment. domtain aiialysis).

adaptati praem(M (1) MWhe poess of identifying, collecting,
* A variable [or placeholder] that is given a value Cr .izg, analyzing. and representing a domain

Car other appropriate information] to adapt a model and software architecture from the study
program (or component] to a given installation of exiaing systems, underlying theory, emerging

siteor o g%= cndiion in ts pertichno.. ogy, anddevelopamntistre within the
S Or opa odtos oeaou domain of interest. (2) The result of the process

adaptive enginWg). in (1).
The pt -cess of modifying a system or component domn engD iering().
to perform its functions in a different manner or The cominaction of comaponents, methods, and
on different data than was originally intended. lools and their supporting documentation to solve

adaptiv mannceMvi dhe problenm of system/isubsystemn developmnent
potw rogrineam or pormed to makre a by the applicationi of thes Inowledge in the

computer pormCrcomponent] usable in a dommi model and software architeicture.
Chaned mirrimnt.domin model().

ap0cdnoene agae A definition of die fhnctins objects, data. and

A compue language with facilities or notationts iaoa
applicable paimarfly to a singles application am faunciou AbMOCuCiO).
(This fits the Neighibors concept of DOMAIN (1) The mPes of extracting the essendi
LANGUAGEs.) d ciffdaucs Of 1dudred functionality by

amblecumdefining it s audcy along wih iUs assoiated
The op~animiali - i e, n 1 f a sstbr I Mvinoal choracuristics and disegarding low.

0 Thopengztioa mcu o aewl syste ore to of the Process in (1).

Any rodct f te sftwae d~veopm -rftwLr- and documntation from which working
procss COpNies be Mad for distribution wpd iue.

*asser(). (This should be meticuilousy maintaned ard
A set of tmumble 4 mPmels that are relate by controlled by a special grulp of rem5 engir.2ts
virtue of being dhe inputs to various sa.Of the and Ilbrimn.)
Software life-cycle, including reqirements,
design cod~ e.n ca docmuetation w_

91

5 0

modularity(M). software repository.
The degee to which a system, computer program A software library providing permuet. archival
(or code component] is composed of discrese srage for software and related-documentatmon.
compouents such that a change to one component (The key word is 'archival'. Also note the word
has minimal impact on other components. 'control' is not mentioned.)

perfectie mainnan=c(M). softwr .(*).
Software maintenance performed to improve the (I) The process of implementng new software
peformance, maintainability, or other atributes systems and components from pre-existing
of a computer program (or component]. softwame (2) The results of the process in (1).

prodncion lIbiar7. specification(M.
A software library containing software approved A document [or other media] that specifies, in a
for current operational use. complete, precise, ver iable manner, the

resource(), requirements, design. behavior, or other

Any software entity placed into a software licrares of a system or component, and,

for purposes of reiset n the procedures for determining whther or
not these provisions have been gatisfied.

(1) Permanent removal of a system, component , axo().

or resource] from its operational environment [or A group of resources constitutng one of the

the master library.] (2) Removal of support f categories in a taxonometric classification for

a operational systm, component . or resour], reusable software in one or mor domains. (The
plural is mxa.) (Not: The Amercan Hetage

M drtbiliwa(a]. Dctionary's (AHD) only definition is cast in a
The deg=e t which (a] softwam [esotm] can biological context.)
be used in more than one computer program (or
system, or in building other compments or parts.] o ixnomy.

The scienc, laws, or principles of cification
reusable softwar*). (AMERI85J.

Software designed and implemented for the
secfi purpose of being resed.

reuse(*). 6. Conclusion
The application of existing solutions to the The prblem with the terms and defiitions used in
problems of systems development softwar engineering that a of importance to

reuse engineering(*). d on m has been examied and several
(1) The application of a disciplined, sysnatic, solumn onfreuse hast n exan an tseveral
quantifiable approach o h d, shuionoffered The most imporant of these is the
oe and mainmmce of software where concpt of a model to provide a foundation for 0
reuse is a primary consideration in the apprach. discussio and conext for an examinaion of
(2) The study of approaches as in (1). (The sane P changes to existing trms and definitions.
definition as for 'software engineering' given in
the IEE standard except for the addition of the T o also provies a method for creatng new
phise beginning with *where*.) terms with good definitions dat will have meaning

softwarM. when used in future work in software reuse.
Computer prvors, (code components and oter
artifac], procedures. and possibly associated
domnintion and data pertaining to the 7. Bibliography
operation of a computer system [or its (Amm= The American -eritag Dictionry,
components]. . Amna Hha Ditogyuim ma.Second College Editim, Houghton Kdn Bostn.

T.pachging offmcos i obt, teir9
inU moes, of funw a imrm m pth [IEEBS88 Radom, J. at.aL, Daft Glomy of Software
inadomain. Egneering Temwolog(p.da to ANSMIE Sid

Software aym. 729-1983), hutiam of Electical and Electronics
A moulled collmecion of software (resouces Enginee (im view), August 15 , 1988.
and We documentation designed to aid in [OXMOM 7]Th Oxford Engish Dictiosw Second 0
softw developmen, use, (mse], or Edition (Simps et. aL., edima), Taenmn Oxford.
mainmennce. Eland 1989.

92

REUSE EXPERIENCES/ENHANCEMENTS - A WHITEPAPER
REUSE IN PRACTICE WORKSHOP

SEI, Pittsburgh, Pa., July 11-13, 1989

Edward W. Beaver
Revised June 15, 1989

Copyright 1989 Westinghouse ESG, Baltimore Md. 21203

1. BACKGROUND

Reuse is initially defined by the industry as reapplying the same
software (modified or unmodified) to a different system.

The industry has a divergence of opinon as to the scope of the reuse
problem. One end of the spectrum believes that reuse is a major technical

* challenge to facilitate *automatic recomposition" of software g_.
reapplication to a similar system. The other end of the spectrum advocates
that reuse is simply a management problem of managing the library of
available software and making it readily available to engineers for reuse.
This paper describes the author's personal experiences and judgements on the -

* software reuse issue.
The domain of a software item is the scope of its functional

performance for a particular type of product in a particular environment In
that sense, it is analogous to the analysis made of a product's features to
address a particular system problem. Thus the scope of the domain analysis
can proceed from the system problem and then characterize the software
product features and environments. Engineers who conduct domain analysis
must be kn~o.-geable in the potential scope of all three of these items.

Westinghouse ESG Aerospace Software Engineering Department's
* experience in reuse dates from 1978, when portions of an F-4 Weapon System

Operational Software, design, algorithms, and documentation were reapplied
to other F-4 programs. Other 1980s experience has experimentally
reappplied test systems and portions of mode software between radars. In
other domains, proposal, mode design documents (MDOs), and software
documentation materials have been "cut-and-pasted" as useful between
proposals and projects. In each of these experiences, the reuse was done
manually, based on an individual engineer's knowledge of the application and
the availablity of the existing materials, as well as a common environment

* that allowed an easy reapplication of the materials.
Rous should be defined as reapplying any portion of thie systems or

software engineering technology applicable to the definition, design,
development, and test of a system and/or software product in a similar
domain. Automa&tic Raus can be developed by assessing the elements
present in manual reuse and defining how an automated browser or composer
might use them.

EWB.REEOSISOO.11

93

2. :LF ENTS OF SOFTWARE REUSEARILITY
Reuse is only valuable if the problem domain, possible solutions, and

environments are compatible or similar. Reviewing and analyzing the
problem domain, the potential solutions, and the environments is defined as
domain analysis.

Reuse applys if the domain analysis (1] yields similarities in the
problem domain of system functions, system interfaces, operating
concepts, and operations intrinsic to the processing of functions, [2]
determines that existing solutions are sufficient for the needs of the S

system, and [3] finds compatible or adaptable environments for the
components or units.

Problem domains for embedded real-time mission-critical systems
follow the system technologies themselves: airborne fire-control radar,
airborne early warning (AEW) radar, ground based radar, shipboard radar,
electronic warfare (EW), electro-optical (EO) systems, communications and
navigation (CNI), command and control (CC), weapon control, mission
control, telemetry processing, ESM/intelligence, etc. Each problem domain
itself is subject to the functional scope of the hardware and the technology -

level. Further technology developments should also be anticipated as new
problem domain requirements.

3. MULTIPLE LEVELS OF REUSE
Within the broad definition of reuse, seven levels can occur for a

problem domain and solutions as shown in Table 1. Each level can potentially
be reused. Spedfications are treated as SubConfigurationjtems (SCI's)
with SpecificationComponents (SPO's) comprised of DescriptionCode (DC)
which represent the specification text Computer software is treated as 0

Computer Software Configuration Items (CSC's) with Computer Software
Components (CSC's) and Units written in Source_Code (SC).

4. COMPATIBLE OPERATING ENVRONMNS
After satisfying the common problem and sufficient solution criteria,

the issue of compatible environments remains. This has a scope which
includes the processing type, processor typefscale, language, operating or
runtlmesystem, requisite libraries, test results instrumentation system,
and development support computer system. S

Compatibility can occur with a range that varies from
hgh..compatiblity for a machine-independent software component that can
be moved easily between systems, to low compatibility where only the
software component design can be moved manually between systems.
Examples of varying compatibility are listed in Table 2. No language has a
monopoly on highly compatible reuse - this imolles reuse is lanuaMe
i- although some languages are easier to reuse than others.
EWS-REOE81U09-

94

51 cREATiN OF AN ACCESSIBLE MARKET OF SOFTWARE COMPONENTS
Reuse is directly dependent on the availability of a library of

software on,,ponents at all levels. Widespread or "popular reuse will only
occur if there is a marketplace for CSC's/CSU's in SC and SPC's in DC. The
Leuse marketplace is uoiablf:

1. the customer procures components as well as systems
2. the cokitractors deliver components as well as systems
3. a forum is available in which to exchange components
4. the components are delivered in, and described in, a recognizable,

standard form on which a "comparison shoppers" decision
can be made

6. PROBLEM SIMILARITY VIA GENERIC SYSTEM MODELS
One method of enhancing reuseable component descriptions in a

recognizable form is to create generic models for realtime processing
systems of each generic type: radar, EW, EO, CNI, C3 1, ESM/I, mission,
weaponcontrol, telemetry, etc. These generic models would have to use
standard realtime system models (TBD) and be comprehensive enough to

* cover all current and anticipated applicable generations and operating
concepts of each system type. The capabilities in each system would be
described by the SPCs, CSCs, and CSUs comprising the system. Hopefully,
these components would be selected from the reuse marketplace. As
anticipated new systems develop, their new components would be added to

0 the reuse marketplace with the appropriate extensions to the generic models.
At the Westinghouse ESG, a Concurrent Managed Mode (CMM) model and

a realtime pipeline (RTP) model is being used for radar system development.
Generic extensions of the CMM and RTP to domain analysis and reuse

• evaluations are being considered.

7. REUSE IS ONE PART OF A SOFTWARE ASSEMIBLY UNE
The SystemRequirements, TimelineSizing, and ProcessCompostion

expert systems of the Software Assembly Line (SAL) of Figure 1 could
utilize components from the Reuse Marketplace. These three expert systems
are only about 1/3 of the total effort required to automate the software
development as envisioned in Figure 1. Significant inventions are required in
several areas. Only a governmentfindustry could attenmpt to create the

* capability of Figure 1. Current management practice would use different
parts of the SAL at the Software Development Facility (SDF) and the
Software Test Facility (STF).

EWB-REEO1589.34

* 95

TABLE 1 - Levels for System and Software Reuse

LEVEL DOD-STD-2167A MIL-STD-483

Proposal, Proposal" Proposal'
System/SystemnSegment, Specification ASpec
or ConfiguratonItem (CI) (SPC)

System Capability or Mode MDD* MDD*

Requirements or Development SRS/IRS B5_Spec
(Functions) (Functions)

Preliminary Design SDD/IDD (SPC,CSC's)

Detailled Design SDD/IDD (SPC,CSC's)

Source code : Product CSU's CSSpec (CPC's)

Test Plans/Procedures STD (SPC) Specification -

non 2167A/483 document used by WEC System & Software Engineering

TABLE 2 - Compatibility Variations in Reuse

High Comoatibilitv

CSC in FORTRAN, JOVIAL, C, Ada - same processor type/scale/OSAibrary
SPC in ASCII Text

Medium Comatibility
CSC in FORTRAN, JOVIAL, C, Ada requiring special O.S. or Library

or using a different processor type/scale

Low Cgrmiatibilitv

CSC in Assembly Language, RTL, or Microcode

Design-Qnl v " Cmnatibility
CSC in Assembly Language, RTL, or Microcode

with ISA unavailable or Development System not transportable
CSC in FORTRAN, JOVIAL, C, Ada to a system where the compiler,

RunTimeSystem, and Development System are not available

EWB.REE01589.4*

96

Sz 0z

22 a zz20o L

UJ- <. uj
ul~ X U)

I U')Z U -

CL 0

La in 0

<- - cr. Z c

"I 0 c

V). 40 ::C z
0 - Q

u.1 U
z2~-

Lai- z
* 00J<

2Q C,
132 ____I-.

* 00O u-I' 3
< 0

EW-RE0159-1

99

8. DOMAIN ANALYSIS EXAMPLE - AIRBORNE RADAR
Airborne fire control radar domain analysis includes the functional scope

of the radar hardware and its technology level, the system functions/modes,
future radar technology trends, the operating concepts, the radar system
interfaces, and the role of a CSC/CSU in a radar operation.

The radar architecture is the functional scope of the radar hardware and
its technology level (i.e. the generation of radar development) ; it is a key
part of the radar domain. Eight generations are apparent:

- Gimbaled, analog non-coherent scanning; monopulse
- Gimbaled, analog coherent (PD) scanning; monopulse
- Gimbaled, digital coherent (PD) sequential lobing; monopulse
- Passive array, digital coherent (PD) monopulse
- Active array, digital coherent (PD) monopulse

The radar system functions or modes could include:
- Low, Medium, High PRF (Non-coherent, coherent)
- Search /Track - Missile Guidance
- Identification - Missile Warning
- Kill Assessment - Passive
- Ground Map / DBS / SAR / ISAR
- Air-ToGround Ranging (AGR)
- Terrain Avoidance /Follow (TA /TF)

Each function or mode has functional performance attributes within which
a software item or component must fit. These attributes for a candidate CSC
are to be examined by a software reuse browsing or recomposition tool. For
a radar CSC, the attributes of a CSC's description can be listed within the
scope of the radar problem domain and its elements:

- Purpose and function in the CMMIRPO and Operating Concept
Single mode/interleaved operation

VS.
Avionics Interface, Manage, Schedule, Control, Measurement,
Signal Processing (SP), Data Processing (DP) steps

Measurement Structure
Performance per antenna, receiver, and power gains
Target capacity

- Timing/sizing with respect to the CMM/RPO
- Interfaces - Mission, INS, EW, radar equipment

Related CSC'sAJnts and Specification Code (SPC)
Applicable processor environments
Applicable development environments

EW.REE01US9-

98

GTE

Software Reuse

for

Information Management Systems

14AplIl 1989

GTE Government Systems Corporation
Strategic Elecronic Defense Division
National Center Systems Directorate

1700 Research Boulovard
RoFcvilie, Maryland 20850-3181

99

14 April 1989
0

GTE Government Systems, National Center Systems Directorate (NCSD) in Rockville, MD has gained

experience in the area of software reuse as a result of an ongoing Imagery Information Management

System (IIMS) Reuse IR&D project. This IR&D effort began in 4088 and grew out .of an axamination of

existing information management systems supporting imagery. Many of the currently available systems

consist of multiple, disjoint databases, whose information content must be manually interpreted and in-

tegrated by users. They require an excessive input of user/analyst time that should be spent on analysis
and interpretation of imagery intelligence data.

In order to attack the IIMS problem, a more economic way of building such a complex system needed to
be identified. Key to such a development is the ability to reuse eiisting information management system
and software components. Thus, the IIMS IR&D project was initiated with the following objectives:

* analyze and produce a domain model for IIMS, generating a generic IIMS architecture and
an application classification scheme into which reusable components can be categorized;

* document the feasibility, procedural differences, and steps to be taken to incorporate a
component-based development into DOD lifecycle standards;

* investigate tools and techniques for identifying, retrieving, and incorporating components
(reusable and commercial-off-the-shef software) to develop IIMS;

" populate a software library with IIMS related components that can be used to prototype or •
develop future systems; and

* develop an IIMS application prototype as a proof of concept application and to provide first
iteration feedback on the domain model and development methods developed in the first two
tasks.

The approach to investigation under the project includes five major tasks:
1. IIMS Domain Analysis;

2. Component-based Development Methodology;

3. Software Reuse Tools and Techniques; •

4. Establishing an IIMS Reuse Ubrary; and

5. IIMS Prototype Development.
A major assumption going Into the IR&O project was that an in-depth examination of each task would be
sacrficed in order to gain as much experience as possible n each area. All of the tasks are currently in
various stages of completion, as described below. Each task was initiated based on resource and time
constraints rather than on a logical progression from one task to another.

IMS OMAIN ANALYSIS

The IIMS Domain Analysis task focusd on the analysis of th IIMS application domain following a
methodology developed by James Gish, Gerald Jones, and Ruben Prleto-Oz at GTE Laboratories in
Waltharn, Massachusetts and documented In a technical report entitled "Doman Analysis: Procedural
Model Refinement and Experiment Proposar by Mum. Gish and Prieto-Dlaz [GISH88. The purpose of
the domain analysis task was to identify the objects that make up an IIMS domain, classify them, and

100

14 April 1989

frame them in a structure that facilitates creation of system models of the IIMS domain. The suggested
use of the models is to identify components and their relationships within an IMS. Identified components
become candidates for reuse when building similar systems. The analysis proceeds from the charac-

* teristics of a specific system to the development of general or generic models describing the genenc
components and their interaction.

The Domain Analysis methodology pursued deals with the identificaton of objects, functions, and relation-
ships common across the domain. The domain objects, functions, and relationships are used to define a
domain taxonomy and a domain model. The methodology involves eight steps, seven of which were
performed under this task. The eighth step, lnvoing the definition of a domain language, was not
attempted due to time and budget constraints. The seven steps pursued include:

1. Select Specific Functions/Objects;

* 2. Abstract Functions/Objects;

3. Define Taxonomy;

4. Identify Common Features;

5. Identify Specific Relationships;

• 6. Abstract the Relationships; and

7. Derive a Functional Model.
The flow of these steps is shown in figure 1, from (GISH88].

* Pgwr 1. Domain Analysis Trwnsfonrms Requirements Ito a Taxonomy and
Models

101

WM~rte

14 April 1989

Before executing any of the above steps, the scope of the domain of the system(s) to be analyzed was
defined in order for the domain model to be both sufficiently general yet detailed enough to express
applications of broad scope within the domain. This domain definition provided a basis of understanding
before proceeding with the analysis steps.

After the domain was defined, the first step in domain analysis was to identity specific functions and
objects within the domain. Domain requirements were analyzed and lists of objects within the domain and
functions related to the objects were ceated. The objects and operations or functions were then
grouped, based on an abstraction of their common attributes, and formed into classes. The identification 0
and definition of these classes by grouping and classification constituted a taxonomy.

The first taxonomy derived was a hierarchical model. The taxonomy was then reorganized into facets
which are perspectives or points of view of a particular class. The faceted taxonomy offers more flexibility
than a single hierarchy and provides a more comprehensive definition of the domain. Both a taxonomy of
functions and a taxonomy of objects were defined in this way.

After the preliminary taxonomies were generated, existing systems were examined to try to isolate their
commonalties. A list of common features was then generated. Specific relationships between objects S
and functions were also extracted from existing systems. The relationships were then abstracted in order
to determine how relationship descriptions can be generaized within the framework of common features.
In the process, the specific relationships were mapped onto the common features. The listing of common
features, specific relatonships, abstract relationships, and the taxonomies were then used to derive a
functional data flow model of the system.

As an added step to the methodology, an Entity-Relationship Model was developed to clarify the relation-
ship between objects or entities within the system and as another way to clrfy the functions of the IIMS
domain. 0

IIMS DOMAIN ANALYSIS CONCLUSIONS

Several conclusions about domain analysis and Me methodology used were noted at the completion of
the Domain Analysis task. The expectations going into the domain modeling phase of this project were
that the resulting model would provide a basis to develop an IIMS prototype and that the taxonomy
resultin from the domain analysis could be used for developing the faceting scheme for a library of
reusable software. The domain modeling effort was only partially successful in reaching these goals. The
lack of success cn be attrilued to several factors, including experience with te domain alysis
modoloW, and the pWned op ach not to do an Wodepth lomain manaysis, but rather to push
through the methodology at a mo suefi level in order to e t overal effecn ess.

The methodology proved to be effective in gaining an uid-Stid of the donmain of interest, namely
imagery information management systems, and resulted In Initial models for develoing the prototype.

102

14 April 1989

H6%ever, the functional model proved not to be the most effective or comprehensive model for the
prototype development task.

The functional model documented in the domain analysis phase proved to be sufficiently generic to other
types of information management systems. Having the imagery functionality in the models provided the
interfaces and place holders where other, nonimagery applications could be substituted for the imagery.
Although information management may be the broader (more generic) domain, narrowing the focus to
data specific (imagery, less generic) applications helped define domain boundary points, and resulted in a
model that is useful (more genetic!) to other types of information management systems.

The other major unexpected conclusion resulting from the IIMS domain analysis is that multiple

taxonomies or classification schemes are necessary to support reuse at different levels of abstraction;
from the design of system architectures, through the construction of the system reusing specific software
components. The domain analysis methodology was effective in defining the system domain but did not
result in a taxonomy that was useful for classifying components to build the system. The methodology
pursued stopped short of defining guidelines for transforming the resulting generic system taxonomy into
a useful scheme for classification of specific pieces of software.

The domain analysis taxonomy appears to be most useful for the earlier development phases where
system requirements ae analyzed for commonality with parts of the domain. The domain analysis
models and taxonomy are useful for determining where or If there Is commonality between systems.
However, trying to build the classification scheme for the library of software components from the domain
analysis taxonomy would not work. The facets for classifying and using design level specifications are
sufficiently different from the facets used for software components to require different library taxonomies.
This was not obvious from the domain analysis mthodology or from the guidelines on building reusable
libraries until these methods were attempted In practice.

The overall domain analysis methodology wored well to describe common elements of imagery infor-
mation management systems and to point towards ares to investigate for reuse during actual design and
implementation. Two additional techniques are necessary: an approach for building phase-specific
(system architecture, system design, subsystem iplementation) reuse libraries based on the domain

0 analysirs;, and a way of inking system and high-level design components classified during domain analysis
to the actual software omponents that can be ruse to construct systems within a domain.

COMPONENT-ASED DEVELOPMENT METHODOLOGY

The basic premise of the component-based developim meNadology is that each unique system
developmen is really an blisuu.lloi of fuwtonalty from one or more applicamo domains. (An applica-
tion domain is a class or family of systems ta sham common characteristics.) This commonality creates
the oppotny to identify reusable component.

103

14 April 1989
0

This task is intended to define in procedural terms the impact of the component-based development

methodology on the standard 000 development methodology requirements. The current status of the

task is that an initial look at the overall development methodology and how reuse refines the methodology

has been started. 0

SOFTWARE REUSE TOOLS AND TECHNIQUES

The approach to this task builds on previous work that developed tools for software component cataloging
and retrieval. Beginning with the utilization of the Asset Librarian System (ALS) developed by GTE

Laboratories, this task will extend and complete software librarian capabilities currently available. The

ALS tool is in the process of being rehosted from its current PC-based environment using Oracle and a

proprietary windowing product to a SUN UNIX environment using SQL and the X Window System. A goai

of this task is to produce a portable librarian toolkit with which customized reuse applications can be 0

developed.

ESTABLISHING AN IIMS REUSE LIBRARY

This task and the development of a prototype IIMS were intended to work together as an iterative

process. Under this task, software components have been identified and described in preparation for use

of the ALS. As a result of the conclusion reached in the Domain Analysis task that there is a need for a
separate classification scheme derived from the components as opposed to one derived from the domain,
this task began with the identified software components and guidlines on building an ALS library 0
[PRIET89]. An initial classification scheme has been derived and the library is ready to be populated with

components.

IIMS PROTOTYPE DEVELOPMENT

The Intent of this task was to apply the component-based development methodology to a small scale

software development effort. using the components in the ALS library. The prototype designed represents
the man-machine interface for a typical imagery analyst whose job is to do research using textual reports,
images, and maps to produce some type of imagery report The prototype is being developed in a SUN
environment using SOL and the X Window System. This task wound up preceding the methodology and
reuse library tasks. As a result essons learned in developing the prototype for and with reuse will be
captured and used as input to these two taks.

CONCLUSIONS 9

GTE NCSO has spent a good deal of effor addressing the problem or ruse in practice We are applying

reuse to a practical pioblem and me comitted to continuing the nweedgatlon of reuse In the future. We
are Interested in sharing om experiences with other users In order to share our concerns and lessons
learned, and to acquire other users' practical lessons learned. We me very Imntrstod In attending the
Reuse In Practice Workshop and look forward to participating with other Interested users.

104

* 14 April 1989

REFERENCES

[GISH881 James W. Gish and Ruben Prieto-Oiaz. "Oomain Analysis:
Procedural Model Refinement and Experinent Proposal*.

* Technical Note No.:87-126.05, GTE Laboratones Inc.,
40 Sylvan Rd., Walthan MA 02254, April 1988.

(PRIET89] Ruben Prieto. 'Building a Library for Reusable Software'.
Technical Report TR-01 6-12-88-126, GTE Laboratories Inc.,
40 Sylvan Rd., Waltham MA 02254, December 1988.

005

* i05

0

The Role of SADT

in Domain Analysis for Software Reuse

Position Paper

Ernesto Guerrieri

Theodore B. Ruegsegger

SofTech Inc., Waltham, Massachusetts 02154-1960

4 ay, 1989

Recently, an internal group i at SofTech was reviewing Prieto-Di'az's paper on Domain

Analysis PRIETO-DIAZ87b*. It became evident that there was a similarity between the

proposed domain analysis process and the SADT 2 modeling proce:is .ROSS85. MARCA8 .

In the past. SofTech had used SADT to perform a "domain analysis" 'RUEGSEGGER $7.

In this paper. we would like to show the similarity that exists between the two processes and

that SADT can play a role in performing domain analysis.

Some of the key points that Prieto-DIaz states in jPRIETO-DiAZS7b* are:

e There is "no methodology or any kind of formalization" for domain analysis. The

article provides data flow diagrams for a recommended process.

9 Potentially reusable items are difficult to understand and to adapt.

e The use of domain analysis to "capture the essential functionality" will make the items

more likely to be reused.

'The Software Reusability Study Group meets on a regular basis to review and discuss topics on software

reust.

2Siructlired Analvsis Design Technique.

106

a The domain analysis process is similar to knowledge acquisition, modeling, and object

oriented programming.

* Domain analysis occurs prior to the Systems Analysis phase. It takes a more general

or abstract viewpoint.

* The domain analyst searches for common characteristics (i.e., objects and operations).

* A "domain specific language" is recommended (with special syntax and semantics).

Classification helps to develop one.

* A basic problem in domain analysis is defining a domain's boundary.

SoiTech performed for ISEC3 an assessment of the potentials for software reuse in tra-

ditional MIS applications. One of the findings from this study !RUEGSEGGER87* was

that:

"SADT is a useful method for the development, evaluation, presentation, and

documentation of generic functional architectures. The "viewpoint" principle of

SADT is an aid in making analogies among purportedly dissimilar systems."

Neighbors defines a domain as "the encapsulation of a problem area" and the domain

analyst as "the person who examines the needs and requirements of a collection of systems

which seem similar NEIGHBORS84J. As a consequence. we looked at SADT from a domain

analvsis perspective 'FELDMANIN89' and concluded that:

1. The key intellectual challenge in both processes is in recognizing and making common-

ality practical.

2. SADT is usable for domain analysis, but it lacks the domain specific language. It was

noted that a domain specific language can be generated for an SADT model via FEO'

diagrams.

S3 .S. Army. Information System Engineering Command.
"FEO (For Expositinn Only) diagrams are diagramb that ,isnain anything needed bv an author to

illustrate a point associated with an SADT diagram.

107

3. The common module identification in SADT is the same search for commonality as is

performed in domain analysis.

4. SADT's syntax for common modules are the "down (call) arrows" and the "interface

FEOs."

5. SADT is not limited to one domain. It can model interfaces between domains.

The SADT modeling process places a heavy emphasis on interviewing (i.e., information

gathering), bounding the subject, determining the purpose and viewpoint of the model, and

generating the data and activity lists. These steps recognize the need for a rigorous procedure

due to the inteflectual challenge in recognizing and forming commoralities.

A domain specific language is needed to comunicate between the analyst and the domain

expert. SADT's generic notation does not give that "look and feel" impression to domain

experts reviewing a model of their domain. This can be achieved in SADT via a glossary of

terminology and the FEO diagrams.

Experience has shown that the decomposition of one of the boxes in an SADT model

should stop when the box is very similar to another box in the same model NMARCASS.

Two boxes are similar if they perform roughly the same function and have almost the same

number and types of inputs, controls, and outputs. This search for commonality is similar 0

to the identification of common features in domain analysis.

The appropriateness of SADT for domain analysis was realized by Douglas Ross several

years ago 'ROSS85', when he stated:

"SADT is an extremely powerful methodology for working out a clear-cut under-

standing of an at-first obscure and nebulous complex subject, documenting that

understanding, and then communicating that understanding to others. ... SADT

can provide the framework for a problem-solving methodology for any kind of

problem."

108

References

FELDMANN89 SADT presentation at the Software Reusability Study Group by Clare

Feldmann, Soflech, Inc., Waltham, MA, April 18, 1989.

FREEMAN87 "A Conceptual Analysis of the Draco Approach to Constructing Software

Systems," Freeman, P., IEEE Transactions on Software Engineering, Vol.SE-13.

No.7, pp.830-844, July 1987.

MARCA88 "SADT Structured Analysis and Design Technique", Marca, D.A., and

McGowan, C.L., McGraw-Hill Book Company. New York. New York, 1988

NEIGHBORS84 "The Draco Approach to Constructing Software from Reusable Cornpo-

nents," Neighbors, J.M., IEEE Transactions on Software Engineering, VoI.SE- 10.

No.5: pp.564-5 74, September 1984.

PRIETO-DfAZ87a "Classifying Software for Reusability," Prieto-Diaz, R.. and P. Free-

man, IEEE Software, Vol.4, No.1. pp.6-16, January 1987.

PRIETO-DIAZ8Tb "Domain Analysis for Reusability,* Prieto-Diaz. R., Proceedings of

CO.MPSAC 87. Tokyo. Japan, October 1987. pp.nn-nn.

ROSS85 "Applications and extensions of SADT," IEEE Computer Magazine. \ol.1_.

No.4. pp.25-34. April 1985.

RUEGSEGGER87 "RAPID: Reusable Ada Packages for Information System Develop.

ment," Ruegsegger, T., Technology Strategies '87 Proceedings, January. 1987

109

POSMON PAPER

REUSE IN PRACTICE WORKSHOP

Features Analysis: An Approach to Domain Analysis'

Kyo C. Karig

Software ENgineering Instiiue
Carnegie Mellon University

Pittsburgh, PA 152130
NET: kck@sei.cimi.edu

Abstract

A domain analysis was permed at Mhe Software Engineenng Institute as part of a reuse
a cpeaTM flL The analysis was called features anazLyss because of its heavy) em7phasis on the
Wiayma of Auwidiona lfeatwves The goal of the analyss was to identif and represent a
genemllzed tunrcfonal model from whudi software requirement can be derived and based on

. tid rusabilt of components can be evaluated and daufsicaton of components can be0
made. Some of Mie eapennce from the analysas are: (1) Mhe domain analysi provided
copolaities for ejipext to consolidate and organize ther domain Ianowledge and for non-
eipetU to learn about the domain, (2) analyzin the functional features was an effective way
to detemilne the jorouc coammalty and the scope of the domain analysis, and (3) there is
no adequate mechanism for representin a domain mnodel to support reuse through the
taqu*0wments analySs phase.

The popose of the domai ana*si was to investigate the concept and teasibitiy, and
there was no 7bvmat' appmach tha was followed. A conceptual modeli n mtd wh1idi is
based on Vie analysis of the "Uniee of discourne is proposed in thM paper as a domain

-nfyi metod.

1. Introduction of a family of system with parameterization to
The Aplication of Reuisable Softwar aNAomode the differences. The analysis was

Component (ARSC) projct at the Software performled to provide a basis for the requirements
Efnginerin Institut (SEt) performed a featums analysis. evaluation of Onhemusability of
analysis as part of a reuse e~pedmert (ARSC89J. =omfts and classification of reusable
The features analysis IPERRV8SI is a type of resoumces.
domain analysis, i which featres (e. hinctions,
objects) of skniar systems in the samte domain are Th Ilfti anlyi wspedorfld by twov
analyzed. BecaLe of kb t" mtm nf domain 11 *eits and two non-experts based on
analysis of fealture the domain analysis was thek domain Imtowledge and using the dlocuments
called a features analysis i ti l reat The goa from the Commnon Ada, Minsise Pacages (CAMP)
of VWm feature anaysi was 11 identify and FP'*8c (MCOONSSa and the PM~nam
reprsn a genraulized functional feature mo-des Pefonuc SpeeCllond "MPS [MCDON8Sb) of

'The ~ ~ ~ ~ ~ ~ ~ 0 ,g Sis'gfwmi A id ie~ ~~ pu It opuedbw OsmmEw of
De~mng t~e mm w me elsu U~inuI~. 1 1~ ~r1~w rpubk Iem

110

* 2

the target system. The domain experts took fth reconcile and come up with a single model. We
top-down approach and defined a high-level believe that determining the scope of the domain
functional feature model based mostly on their is a necessary first step of the analysis. and that

*domain knowledge. The non-experts took the analyzing the features of products is an effective
bottom-up approach depending heavily on the way to determine the scope.
CAMP docurments and consultation with the
experts. They idenified the functional features Experts with different backgrounds often used
impierniented by the CAMP components and different termis for the same thing or the same

* consulted with the experts to verily that the termts with different maning. For example, the
features covered general problems. term enavigatione had a different meaning to the

ar-to-air missile expert than to the cruise missile
The analysis results were represented using the expert. To avoid possible misinterpreation of a

aclt" charts of Statemate (!L0G1871, which was domain model. we believe that a dictionary which
* adopted as the requirements analysis too in this Includes the definitions of the keywords used in

project. A samp~le activity chart Is included in the model and description of the modtel should be
Exhibit 1. produced during the domain analysis.

Some of the lessons learned from the analysis As stated previously, we used the Statemate
are discussed In section 2. Our perspective on activity charts as the domain model representation
domain analysis Is described In section 3. mechanism. The rationale behind the choice is
followed, in section 4, by an outline of a that we already chose to use Stalemate for the
methodoogy proposed for domain analysis. allkmet analysis and we wanted to derive

terequirements specification from the features

* 2. Lessons Learned model by selecting the features that are
The features analysis was performed to appropriate for the target system Although, we

Investigate the corxxept and fth feasibility, an i did not have any problem describng the features
was everintndedto gnerle acompete and their static structure, It was very difficult to

woainer mo de tovr geneae a f~ewte preen logical rlationhips betwen the

desomans modhel Hoer, weared an ths etin featujres using Stalemate. We warted to specify
* lesonswhih ar suninaize In hissecton. tte constraints and composition rules among the

One of the problemrs enonee atth features (e.g.. fth feature A must be, or must not
beginning of te analysis was to dtermine th be, selected when the feature 8 Is selected). Also,
scope of the domain. One domain expert wa we warded to specify If a feature Is optional or
knwgeable In cuise inssiles whereas me~ mandatory. (We understand that Stalemate was
other expert was knowledgeable in air-to-air M deige to represent the kind of Inormation
missies. and they often used the same we wanted to express. n) We belieye that this a
terminology for different manng. As they geea sto ing tof ot omai th Aalyosi.n
resolved the differenes .I was realized that., vial ott L4 i oanaayi.I
althoughi both types of systems ohm som order to have mmu occi at the requirefnents
common feature attehg level, thr were no level, we need a mecharism that can adequately
enough commwonalities that could be adequately repmnert te geo Wal&actonalty of software
represented by one functional featre miodel. "stn from VWi splilations 0f a. specific

Gudacean navigation meio w~ we softwar systemmcnbe genrad
ma faues of issile systems. were dl ifent: Althugh, we could nvot produce the

andthe hd t moif thirdefinitions Io reureet opecilicatlon direty from the

3
0

domain model, the knowledge gained during the components. An ideal domain model and
features analysis greatly helped us to do the architecture would be applicable throughout the
requirements analysis. The developers could life-cycle from requirements analysis through
acquire enough domain and reusable components maintenance.
knowledge to define the requirements. Based on
our experience we believe that the domain Why do we need to do domain analysis?
analysis or reexamination of the domain modelshould be a standard phase in the software life. As th~e areas to which computers are applied
cylde. become larger, one of the problems faced by theindustry is that it is often difficult to find software

Our perspective on domain analysis is engineers who have the required application
described in the following section. domain knowledge. Reuse of application domain

knowledge is becoming an important issue in
softwao engineering. The purpose of domain

3. Perspective on Domain Analysis analysis is to gather and represent application
Our perspective on domain anaySLS is domain knowledge in a model and to develop an

described in this section by answering two archiecture that shows how the problems in a
questions: what is domain analys? and why do domain are addressed in software systems. A
wO need to do it? domain model unifies and consolidates the domain

What is domain analysis? knowledge which may be reused in subsequent
developments.

Domain analysis is a phase in the software Ife- More and more organizations consider software
cycle where a doin mJodel, which describes the as an asset that can provide an Important edge in
common functions, data and relationships of a business competition. Therefore, identifying areas
family of systems in the domain, a dkonay, that will maximize the return on software
which defines the terminologies used in the kwestnent Is an activity that encompases both
domain, and a software ahltedcure, which bsness planning and software engineering. The
describes the packaging, control, and interfaces, boness planning aclit"y identifies future
are produced The information necessary :o products. and the domain analysis activity
produce a domain model, a dictionary, and an identifies the product commonality and potential 0
architecture is gathered, organized, and software assets. The information on the software
represented during the domain analysis assets Can be fed back to future business

Domain analysis is related to requirements plainling. Also. the product commonality
analysis but it is performed in a much broader information enables large-grain reuse across the
scope and generates different results. It products.
encompasses a family of systems in a domain, The productIvity and quality Improvement from
produces a domain model with parameizatlion o e components bulk for the purpose of reuse
accommodate the differences. and defines a Is much great" tn ta from omponents
sadad archiecture based a ft rwmh ic L s arin
components can be developed w4d itegrated. A Orde to budr~ecrpnns the contexts
domai model and an associated dctlonary in whid te reuse componeni wo be used
represent the domain knowledge, and an M b lundel ad the reable components
architecture represens the framework for nus e dsig to auume the contextual
developing reusae components and for dills . A domin model and an architecture
synthesizing Systems from the resuable

112 0FI

* 4

define the uontexts for developing reusable characterized by its properties, and som of these
comp~onlents. properties (for example. name) may be used as

identifiers. The end result of namuig is Called a
*In summary, the output from the doai Operceived reality.0

analysis can be used to:
" define the context in which reusable The perceived reality may contain names which

components can be designed and are not of concern for the target system. Thosedveloped. unnecessary names are eliminated and what is left
0 a acrtain reusability of candidate is the Ounives of discourse.6 The universe of

Components, discourset is an objective system for which the
" Identify and develop software assets, description will be made. and within which
" provide a model for managing dialogue between the system developers will be

(classifying. storing., and retrieving) limited.
the software assets, and

" provide a framework for toln n The entities in the universe of discorse are
systemns synthesis. classified ito homogeneous sets (classes or

types) of entities; homogeneous in the sense that
As noted previously, the Purpose Of the features all entities in the same class have some properties

analysis in this project was lo Investigate fth In cormmon. Each entity calasied as such is
concept and feasibilty. and there was no formal named as an entiy Moo, which is a unit in
approach followed by the project. A repeatable conceptual model constnacton. Relationships
method Is needed to evalate and improve the existing between the entities are also classified
domain analysis process. In the following scin, into relalionshW types, and these type are
a conceptual modeling technique is proposed as a defined between the entity types. Properties of the

* domain analysis method. entities in a class are classified into property
types. and for each Property type, possible values

4. An Approach are defined. A coceptua model contains the
A number of system modeling techniques have description of the abstraced universe of

beendevlope an use inthe ataase rea discourse. The process is summarized in Figure 1
[6R00184). Of those technique, a conceptual lw. R<modeling techniqu Is summarized from [NLJSS76J Syt
and [SCIE791 and proposed as a domain
analysis method in this section. fan g

Constnjcton of a system starts by perceiv a zo±
conceptual model whic my be derived from
existing "ruWlt (NUSS7SI or from a hypothetical IS*t@
systemn. Roafy Is defined lo be a system (or
Systemsli) In existenc aid consIts of eniies and Vi*g

* relationships between the etiles (CHEN76J. Ani(D in
.ttlyisdthera W*" caentlyor aconcept.I
Through a luinu percepbor, a rea sy"em isI l" iatn
Perceived and lien described by "namng":
4101011. propeties, amI relationships which are Coop lMdel

* perceived for(a system we named. An entity is Mod", n~.Lgy

113

A conceptual model consists of abstract Design , Software Engineerinig Institute (technical
elements of a system (or systems). such as entity, report In preparation), April, 1989.
attribute. and relationship types, and rules and
constraints between the elements. The entity- [BRODIS4I Brodie. M.L, Mylopotuios, J., Schmidt.
relationship model ICHEN761 or smantic dat J.W. editors, On Conceptual Modelling. Springer-
modeling techniques [MCLEO781 may be used as Verlag New York Inc.. 1984.
a conceptual model schema Language. It is
demonstrated in (KANG82J that an extended (CHEN761 Chen, P.P.. "The Entity-Relationship

entity-relationship model can be used as a mfeta, Model - Toward a Unified View of Data'. ACM
language to define systems spciicon Transactions on Database Systems. vol. I., no. 1.0

languages. p-9-36, March 1976.

[1L0GI87J -ogix Inc., STATEMATE. The
5. Summary Language ot Stalemate, W-ogix Inc., Burlington,

Domain analysis is an activity to produce a MA., March 1987.
domain model, a dictionary of terminiologies used "G2 ag K..An proc fr
in a domain, and a software architecture for a SL fn Syangm K.C.. Ant Methoadore
family of systems. These outputs from th domn J S vokng Sastempe De dlopmnsMeteodolosies

analysis:Speciicafdon, Ph.D. Dissertation, The University of" facilitae reuse of domain knowledge Mh~ ,M. 92
in systems development,MihgnAnAroI.182

" define fth context in which reusable (MCDON8'5aj McDonnell Douglas Astronautics
components can be developed andCoC vw Ad fsiePcas(AM)
the reusability of candiate C. onnAaMsiePdae CM)
components can be ascertained, OVen~ieW and Commonalit Study Results.

" provide a model for classifying, Mc~onnell Douglas Astronautics Co., 1985.
storing, and retrieving software
components, [MCDON8SI McDonnell Douglas Astronautics

" provide a framework for tooling and CCo..e Missile and Aitadc Guidanc
sy"ems synthesis from the reusable Sedab hmWWeLn fakGiac
components, System BGM-109C. McDonnell Douglas

" ablow large-grain reuse across Astronautics Co.. 1985.
products, and

" can be used to identify software PAL08 Mcdeod, 0., A Semantic Data Base
assets. Model and If Associated Sin ctured User

kften~ace, Ph.D. Dissertation, MIT. Cambridge,
Oased on our experience with a domain MA., 1978.

analysis (called features analysis in this project) [US6 * MGM.' rwAcietr o
and fth potential benefits from it, we believe that [heNext7S G~enratMon Databass ahitet o
doanl analysis should be a standard activity in Sthe ext eert In Database Management
the software development Eie-cycle. SYIMlwfl ~o Id Pub. Co,, p. 1-24, 1976.

Refrems(PERRYSSI "en. J., PoWspdve on Software
Rem.e Software Enginern Insfue (CMUISEI.

[ARSCO91 ARSC. An Experkv'ent to Analze a TR1-) oebr 1968.
Reuge-Based Software Development: Detaileid

114

6

[SCHIE791 Schierann. A.. -A New Approach to

the Entty-Relationship Moder. Procedings of the
International Corderence on Enlity-Relationship

Approach to Systems Analysis and Design,
p.383-408. December 10-12. 1979.

115

7

I ---- j *- -

A Sample Functional Feature Model

Exhibit 1.

116

-

Application of Domain-Specific Software Architectures to
Aircraft Flight Simulators and Training Devices

Kenneth J. Lee Michael Rlssman
Software Engineering Institute Software Engineering Institute

1. Introduction 1.2 Readers Guide
Work on domain-specific software architectures This paper Is too brief to be able to cover all aspects
(DSSA) has been on-going at the Software Engineer- of our work in the domain. The SEI technical report,
ig Institute (SEl) in P h PAn OOD Paradigm for Flight Simulators. 2nd Edi-
1986. Theprimary goalofthisprjecistoencour- tion, describes our work with a DSSA in the flight
age the creation and use of canonical design specifi- simulator domain; see [2]. The SEI technical report,
cations for typical, recurring problems in an appli3- An OOD Sobition Example: A Flight Simulator E/ectri-

* tion domain. A canonical design specification con- calSystem, describes the implementation of atypical
tains templates for software that ratifies a specific in- simulator system using the OOD paradigm; see [1].
stance of a recurring problem. We are interested in The concept of a DSSA is introduced in Section 2,
canonical design specifications that embody princi- which also discusses the approach used to develop
pies of object-orientation. The project will be success- the specification and some benefits of the approach.

* ful if it does nothing more than directly and indi- Section 3 presents a view of the flight simulator do-
rectly generate examples of domain-specfc specifi- main and describes a typical problem and its specifi-
cations to object-oriented designs. cation. The section concludes with a discussion of

some advantages of using DSSA.
Aircraft flight simulators and training devices have Section 4 briefly describes the future direction the
been the primary application domain for our work. DSSA project will take.

* This paper describes a specification for atypical prob-
lem in the domain and discusses the benefits of both 2. Domain-Specific Software Architec-
the particular specification and the use of canonical tures: Definition of Terms
specifi in general This approach to building large software systems in.

volves breaking the problem up into many smaller, re-* 1.1 Background cuning problems. Recurring problems are problems
The effort in the domain began with ourparticipation In that occur mor than once. One identifying character.
the Ada Simulator Validation Program (ASVP), a re. i8tc of a recurring problem is that the problem occurs
search and development effort by two aerospace con- in several places within a system, often on different
tractors to redesign and reimplement subsets of two processors. In the flight simulator domain, a recurring
existing flight simulators in Ada. The SEI project team problem is the description of aircraft systems in terms
supported the Air Fome System Program Offic 2 by of objects, connections, and control mechanisms.
attending reviews and acting as technical consuitants. The systems may be part of one executive funning on
As part of our involvement, we developed a software a Single processor or several executives on several
architecture for flight simulor systemg e. The soft- processor. Anoher aspect of recurifng problems is
ware architecture has received acceptance in the that they tond to be lthose parts of the system that act
domain and is being used by contractors Involved in on many dinerent uinmres of the same kind of data.
full-scale development efforts. Section 3 descrbes For ample, a snulaoretucal system may have
the results of this work in more detal. several hundred crcuit breakers. A specification to a
"7%i wek is spONmOd by te U.S. DvN @ 0wemw.
" SPO fWr Trning Spvmm (ASOMYW O WdO-Nfto Ak Am Om.
'This wok isdbed in dlii Inf all TedTmid RsoW.ma An Pwafpu p' FJgt 5nuw bd2W, -

n(21 aNd An 000 Se m EmnW: A .f* SwluW Ek &Sam (I.

March 1989 1

117

I0

recuring problem addresses an aspects of the prob- eated test procedure. Also, forms allow for automa-
lem from all occurrences of the problem in the system. tion. Given a diagram and a diagram parser, auto-
Implementations of a canonical specification to a re- matic generation of software code would be feasible
curing problem are then similar in structure, behav- using the forms.'
ior, and functionality. When a design specification is created with icons

A domain-specific software architecture is a set of representing functional idioms and forms are as-
specifications to recurring problems that characterize signed to each functional idiom, we say that the de-
a domain. The specifications are represented sign specification is a metaphor for the software
diagrammatically. The diagrams are constructed us- system. Once a designer, an implementor, or a main-
ing icons that represent domain-specific functional tainer has learned the functional idioms and the
idioms and forms. forms, the design specification provides a detailed

The spcilized funtional idioms represent description of the system. In other engineering disci-
oTh ings fromi hi h d esign specifications ses plnes such a diagram, for example, a blueprint in

Of things from which design speciications can be architecture, is accepted as the design of the entityformed. The things can be entities (for example, ob- it represents. Practitioners can use the diagram and
Jects), connections between entities, or abstractions understand where awagD is to go, how high it will be,
for grouping and updating related entitles (for exam- and how it will be constructed. We assert that this kind
pie, systems and executives). A functional idiom Is of diagram serves the same role for software systems.
the basis of functionality in the diagram. Functional
idioms abstract the functionality of the design (see
Figure 1). Rules of composition are associated with The development approach using DSSA involves the
each idiom. For example, the rules for a connection following steps:
are: * Identify the recurring problem(s), e.g., aircraft

" A connection touches two objects, one at the simulator systems.
head of the connection and the other at the * Solve each recurring problem for a single in-
tall of the connection, stance of the problem, e.g., for an engine sys-

* The label on a connection can list the ele- tern.
ments of a composite. * Review and validate the design using the de-

* Connections may pass through a system sign specification.
symbol, but originate and terminate only at * Generalize each specification to produce
objects. fons.

Forms are code templates satisfying the fy * Verify the forms with respect to the design
of a functional idiom. The forms abstract the func- spe n.

* Generate the rest of the instances of thetionality of the Inplementation. A file containing a
form wi contain an Ada package specification, a specifications using the forms.

package body, and a test procedure. The file con- This Is a depth-f approach. The approach provides
tais placeholders for the name of the form, the Ada seveM benefits:
types used in the form, and so on. The piaceholders * Desgn decisions are mde once and applied
flVM be globally replaced with appoprite vaies us- to all instars of the specNication.
ing an etr. Global replacement of the placeholders * Multiple instances of the design, which would

affecs the specification, the body. and the tet pro- be ubject to maintenance and enhance-
CedOu: The resulng file is a compilable unit that can nent. are not created before the design Is
be tested (after compilation and inking) w the usa- valdated.

"W m n awe of a wd i hauld pesn ilmee dlegmn. We d nN ham i Msaminm 10 bld such a meL
Wes WOWi be s~ng to ,-No wilt l bsAdme b i s @el a ve.

2 MmWh 1989

118

icon functional idiom functionality

rectangle object maps inputs to outputs

arrow connection moves effects between objects _.

round-cornered system groups related objects, provides update
rectangle abstraction for the set o objects
gray-filled area executive groups systems; provides ordered

updat for the systems

Figure 1: Classes of Functional Idioms

* Documentation can be produced in a similar tem must also address those entities that are
manner, i.e., instances of documentation can needed to run the simulator on a computer, e.g., con-
be produced for the initial instances and vali- nections for moving data, and executives for manag-
dated. Then as new speci ication instances ing time.
are created fronthe forms, new instances of The identification of an aircaft system as a recur-
the documentation can be created from docu- ring problem fails directly out of a cursory view of the
mentation forms. domain. There are several systems in a simulator,

The amount of documentation produced will e.g., an electrical system, a fuel system, a hydraulic
be less. The generalized seciication can be system, an engine system. Each system is periodi-
described once. Each instance only needs to caly updated. At the time of the update, the system
describe the qualities that make it unique. must have access to the state of the world outside
Pointers back to the description of the general the system. When the system update is complete, the
apecffication suffice for all other qualities. world mut have ss to the state of the system.

Thus, a general specification for airnft systems
3. A DSSA in the Flight Simulator Domain that addresses objects, connections, and update trig-

Our Involvement with flight simulators began with gers should be applicable across simulator systems.
the A-SVP. The concepts erbodked Iii the ZW do- 1' " %
veloped during the program by the SE] team, were curtngproblem. See 11) and 12J for imolementations
accepted by the contractors and endorsed by the o(the specficaf on.
Pmgram Office. Subsequent work with contractors 3.2 A Domaln-Specffic Software Architecture for
doing full-scale developments of simulators has ma- Flight Simulators
tured the DSSA. This section describes an instance of a specification

3.1 Domain View lo a recurring problem for flight simulators. The re-
A natural analogy exists between a flight simulator curring problem is the description of aircraft systems

nd the realwordL A real-word aircraft Is bulk of S- in terms of objects, connections, and control mecha-

terns, and the systems are built from parts.' These nisms. The speciation defines a DSSA for this do-
parts can be created explktly in software. Thus, there main.

can be a direct correspondence between the real- This specification is for an aircraflt simulator engine
world entitles and software entliss. A specification system. But this is an instance of a specification to a
that takes advantage of an objective view of a ss- recurring problem: thus, the characteristics of the

a Fera i an e g m hi is an*m upef burnhrs, km . abines, &d mem .

O* w m lWdanme WiM muaslbe ept in ind hndude:

* -N 1 R mpi -s depe A ri
* qpes$d lmeet Aolm suppot

* 'sms abida te W tIt exaue, e.g.. ft hinmiean symsm, e eamed Is be pen of .6w
einaen p e ip n"ng an oew poaesom. See te Pradgn noan (2 nwe I iomumf.

Mrh19893

119

specification, inctuling the diagram and the discus-

sion, apply equally to the other systems in a simulator.

Diffuser Fan Duct Surner

Enie Casing

Inlet Air

Exhaust

Inlet Air

Rotor1 Rotor2

(Bleed valve - not shown)

Figure 2: Turbofan Engine Cross-Section

The objects in the engine system are the diffuser, rotor orgy is removed from the air by the fan duct and the
1. rotor 2, burner, fan duct. exhaust, engine casing, turbine blades of the rotors. Energy is added to the
and bleed valve. System-level connections are airbytherotorfanbladesandthebumer(combustion
shown, e.g., a connection moves discharge air pres- chamber). Thrust, which drives the airframe, comes
sure, discharge air temperature, and discharge air out through the fan duct and through the engine cas-
flow from the diffuser to the engine casing. Executive- ing as exhaust. The name correspondence provides
level connections between objects in the engine sys- a basis for traceability.
tom and objects in other systems are also shown,
e.g., a connection moves a fuel flow value from an ob- The engine system design specification, Figure
ect n the fuel systemto the bumer object in the en- 3,depictsonesystemontheaircraft. Eachsystemwill

gine system.? have a similar specification that.shows its connections
to the outside world and the connections between

Figure 2 shows a turbofan engine in crass-section. Is objects. The separation of connections from ob-
The parts of the engine are labeled and the flow of air jects allows systems and objects to be independent.
through the engine is shown. Figure 3 shows an en- independence permits separate development of
gine system design specification that corresponds system and objects, defines natural divisions for as-
to Figure 2. Figure 3 is built using the icons discussed signing systems to processors, localizes details to al-
In Section 2. low for easier modifications, and allows replacement

of systems and objects n toto.
The icons ae put together according to the rules of
Conositon associated with each idiom (see [21 for The executive enaonpasses systems and manages
more information). Thee is a name correspondence lime for the systems. Time is managed with a cyclic
betwen the labeoled parts in Figure 2 and the labeled executive. The use of a cyclc executive, traditional in
objects n Figure 3. There is also a functional corre- flgt umulMor, Is a viable mechanism for simulat-
apondence. Air flows Into the diffuser from the envi- Ig concuency. An in4ploenalaon, using this
ronmetM and passes through the engine casing. OSSA, allows for localization of schedung informa-
The engine casing allows the air to flow though the ion, which may ease load balancing (see [2] for fur-
engine, interacting with each object In turn. Some en- ther discussion).

4 011" 1989

120

SwSA Iq* m* .tam .wm ..

Fiue3 ubfa Enveaeigipeiicto

3.3Advntgesofage" a lgtSiuaoscnetinadtesheuigo pae
Our xpecatins tat SSA nd dsig exa~Ie sees efetiv.Sneseiiain sn

S wold tansiion el ad bereusble re Ecoma DSAaedvlpdb9h eddsges
relty.Tecofle. hvbelcetdyhflh the* swaort ofW the leddsgesaehMl

simulator comniy Pora Ofcesbelev t NtlvOae.TereurnWrolm r
reqjirng DSA erlyIntheacqisiionproes asa slve one ad fr ll y te mst alete

reasonable andneesslyfat eor n assuring theR su- eoe

creaed ad usd a SAForgera monhs Tubfno Engin Deigws foS oeeeapecification aia
paus Adtes of DSSA The eihtimua r ofnciosn the bsceacssimltrsstemslin Ioe. uthes
Oures by tonstatr wil ad n eatuing te e tem fech-t f te .d ce scitn Iand usner-
woldg tastoweladbresbeaebcmn sardvelonsencby telad deigter-

scaliyThcopsave~ benacpeny hlgt teffomrs, efucatilnaofdmintners andhihl
simuato comuniy. rogrm Ofice beiev tha leeragd.he ecisiols witruer

reurn a OSSA r I h cuiiinprcss a solved laougeEei and prgrmoffcs also ay qu osaltesr
reasoeable to icussa fatoe din in temsu epe
Cos fftre porms. onactr Ie lhe di n soC otlifl cpt be supported. thacume

a re tnae o lv the beeecufrrS ing p chit of mcntmst the DSSA i iiie.Ti l
cetean se at inS thi cseupate systm now es Dewsignorevew mom geeaddsspesin. ppc-
pobus s n roaae the resse of tSA he up-tio ofewersbarecable oiscss alultr y tes Ives the rc
date Aoparadtrigm tad separgt tbecs, conex of the oSuc heteo Is cosseto pudr-

* 'TSoe comens fom contractors workin mo full-g sp d bm aello. w foe effcin m de criato of
scewel o mn e newmes hnwewro of maintimre andmnnsd'g6welts

MArt 1989oie cmo agae Eg-cniiai fdsg eisoswt sr

0er eal od stedsg ntrsadpormofcs lo ult sir
otth ilmsInf DSA heleddeig.ane rgnzaio anbeIvove1o2ssr

duce an instance of a general specification, * We are producing a transition plan that ad-
which is optimal for the system being speci- dresses our interests in pursuing other simu-
fied, reviewers can explore alternatves. latlion areas and other domains.
Without constraints there are too many after- Our work on dornain-specic software architectures
natives to explore. Tradeoffs are addressed
at the right time and at the right level. has addressed the requirements of programs in the

" Reuse is l&ely to improve using a DSSA. flight simulator domain. The DSSA approach involv-

Reuse of design decisions is obvious. Less ing recurring problems is a common-sense view ol

obvious is the observation that the software large software systems. The creation of canonical

produced is more likely to be reusable in design specifications to recurring problems has pro- •

other systems using the same OSSA. The vided practitioners with domain-specific examples.
consistent structure of the specification en- Such examples provide a focus for education, dis-
hances reuse of the software. cussion, and evolution of the concepts of a DSSA.

" The software should be easier to maintain.
First, each system will be implemented sirm- Acknowegments. This paper is based on work per- 1
ladty because thi functional idioms are formedby the Domain-Specific Software Architecture
based on forms. Second, the separation ofbecd onn econs, steseaaion o- Project at the Software Engineering Institute over theObjects and connectins isolaes each Sys-

tem of objects. Thus, replacement or ad& pas two and a half years. The project members are

tion of systems affects only one end of a set Rich DOppolito, Ken Lee, Chuck Plinta. Mi7e

of connections. The systems of objects at the Rissman, and Jeff Stewart. 0
other end of the connection do not need to
change. Finally, aspects of a system, for ex- References
ample, an engine system, are simulated in
identifiable localities; enhancements and [1] Lee, K.J., RIsman, M.S. An 0OD Solution Exam-
sirulations of malfunctions map to corre- pie: A Flight Simulator Electrical System. Techni- 0
sponding software entities. cal Report, CMU/SEI-89-TR-5, Software Engi-

4. Next Steps neering Institute, Pittsburgh, PA. 1989.
Our Intention Is to discover and cultivate the notions
of recurring specifications and OSSA. The hope is (21 Lee, K.J., Rissman, M.S., D'polto, R., Plnta, C.,

that the concepts will whet the appetites of others who Van Scoy. R. An 000 Paradigm for Flight Simula- 0
will carry our ideas in other directions. Our aim then isto, I2nd E~ion. Technical Report, CMU/
to disseminate information about DSSA and accom- SEI-88-TR-30, Software Engineering Institute,
modate the use of that information. So far, we have PItlsburgh, PA, 1988.
been able to do so in the context of the simuator
domain, and we have begun to apply the technology [3 Plinta, C., Lee, K.J., Rissman, M.S. A Model So/u-
to the command, control, communication, and Intelli- #on for Cli Message Translation and Validation.
gence (C'Q) domain (see [31 for more information) and Technical Report, CMU/SEI-89-TR-12, Software
the embedded sy"ems domain. We invite particdpa- ring Institute, Pttsburgh, PA, 1989.
tion from those engaged in tmse and other domains.

Our work contie on several fronts:
* We are working with reakw program de- For mom kbn w :onmtact

in team to polsh the descriptiots of re- Ken J. L
Curfing problems, which constlue the buk of Software Engibeering Instiue

a system. CamgIe Melon University
* We are monitoring the use of OSSA on full- tNibrgh, PA 15213-3890

scale simulator developments to help mature Phone: 412268-7702 0
the technology. ARPANET- kos.cmu.edu

6 Mrc 1989

122

The Role of Domain Independence in Promoting Software Reuse

Architectural Analysis of Systems

J.M.Peny, GTE Government Systems Corporation

M.Shaw, Carnegie Mellon University

Introduction
Domain analysis for rouse Is a topic of much current Interest and study. While there are several
variations of domain analysis, they are usually characterized by their emphasis on application
dependencies. This position paper describes architectural analysis which is a type of analysis for
furthering our understanding of software architectures. It attempts to raise the abstraction level of design
elements and, thereby, emphasizes domain independence. Although architectural analysis and domain

* analysis for reuse have different processes and goals, they are closely related and support one another.
This mutual support is identified and examined. The SEI Software Architecture Project is described to
provide an example of architectural analysis.

Domain Analysis for Reuse
Domain analysis is a discipline which is evolving and can be undertaken for different purposes. In the

* context of software rouse, several variations of domain analysis can be discerned. One type of domain
analysis examines software systems in a well defined application area to identify operations, objects, and
structures which are common to those systems. The common entities become candidates for
construction as reusable software pars. The emphasis in this form of domain analysis is on application
dependent parts for use in constructing software systems. A good example of this type of analysis is
provided by ICAMPSS. Another type of domain analysis examines system requirements for a product to
identify operational features which can chartwertze a product family (of systems). The emphasis In this
form of analysis is on application behavioral characteristics for use in deriving system members of the
product family. This type of analysis, features analysis, Is discussed In (Peny88]. [Gish and Prieto-

* lDiazaajopose a general definition of domain analysis as the IsolatOn, characterization, and abstraction
for the purpose of creating domain taxonomles, models, and languages.

While these variations of domain analysis differ in their focus of attention or purpose, each attempts to
understand an application area, or a family of application systems, by identilying domain specific

* characteristics which will lead to increased levels of software rmuse for that application domain. There is
an implicit assumption that the exploitation of domain d dncies will be more supportive of software
reuse than sole reliance on domain independent arlacts; and VWa by concentrauing on a relatively narrow
domain, reusable artifacts wil be more numrous and omprheiup they arm domain dependent.
Consider, for exaMPl, te variy of musable subsystems for ainics, iMcujing [tJ navigation,

S guid.nce, display, Werng, and [Pan device iterface, avbons deta and physical model, and
ineral measuremen.

* 123

2

Domain Dependence and Domain Independence: Considerations for Reuse
While this focus on domain dependency is justified, it should be balanced with an appreciation for and
understanding of the role of domain independence in moving software reuse from an ad hoc to systematic
practice. The boundary between domain dependence and domain independence is subtle, often
changing, and is one of degree. What often begins as a domain dependent artifact. through the right
abstraction, can become applicable to another domain and, thereby, take on a degree of domain
independence. For example, GTE Communication Systems Division evolved reusable telephone
switching software(Roder78] and successfully applied the design of this software to other application
domains, including flight controller trainers, C3 systems, and software engineering development
environments. Another example of evolution from domain dependence to domain independence is
provided by the message generation software(Lee, Plinta, Risaman8g developed by the Domain Specific
Architectures Project at the SEI. This software originated within a C3 application to address the
proliferation of message formats. The resulting software is reusable for other application domains, for
generating, converting, and validating types of structures. Successful abstractions often begin as domain
dependent concepts, which survive from ad hoc solutions to folklore practice, and through the
suppression of some detail (while retaining the 'right' detail), become useful abstractions for systematic
practice and eventual codification for application across several domains.

Study o descrlptions of software systems indicates that some of the 'rghr abstractions for supporting
software reuse are design abstractions, pertaining to software architecture. The definition and
formalization of these abstractions will not only promote the current practice of software reuse, but enable
new kinds of reuse, at the architectural level. Domain analysis for reuse which focuses on domain
dependent characteristics should be balanced by analysis which focuses on domain independent
architectural abstracions.

Design Level Abstractions Enable Software Reuse
Abstrctions enable programmers to handle program complexity. Higher level languages, abstract data
types, Procedures, and modules help pogrammerm build better prog ms. As the use of design
abstractions, such as these, become widespread, canonical and specific Instances are collected into
liraries for reuse, and tools are developed to support their utilization in practice. Today, software
problems Involve system complexity and design abstractions for the system level are needed to help
solve them.

The abstraction level of design determines the type and extent of software reuse which is possible and
Practical to achieve. Prgram statement abstraction raised the level at which rmuse could be addressed
fom he Machine statemert level to the pogrammtng language cnuij level; and proedural and data
absracion raised the level of possiblseres frm the programming consmruct level to a package and type
level. Advancement to the next design level not only will enable reuse at a new higher level, but wo lead
to routine and systematic ruse at the prior levels.

1.4

3

Architectural Analysis for Higher Design Level Abstractions
The next advance will be to the system organization level and requires the identification of common
architectural constructs and rules for their integration. Application domain analysis can support this

* advance if it has the goal of identifying important architectural elements in application system
architectures and if the analysis does not rule out domain independent abstractions. This type of analysis
is referred to, here, as architectural analysis. Analysis of these architectural elements and the ways in
which they are combined can lead to good architectural abstractions for system organization. These
abstractions can be used to specify architectural constructs, both domain dependent and domain
independent ones, as well. If this can be achieved, software reuse based on these new constructs will be
possible, thus, enabling more codification and systematic practice of reuse.

Architectural Analysis for Understanding System Organization and Reuse
Several basic approaches to software reuse include:

* identification of reusable components for development of a system;
* modification of a generic, base system to develop a new product;

* specification and invocation of the appropriate combination of primitives to elicit desired
system behavior.

* These three forms of software reuse are related, but differ with respect to emphasis on inplementation-
time or design-time; on lower or higher level of component: on parts or integrating framework.

The type of domain analysis for reuse should be determined by an explicit awareness of the chosen
* approach to reuse. For example, domain analysis for common parts Is appropriate for 1); features

analysis, for 2); domain analysis for a taxonomy [Pfieto-Diaz$6 was done for classification of work
products in the context of 1). 1) is a constructive approach and 2) is a derivation approach. 3) is a
generatWe approach and requires a deeper understanding of system organizaton.

Architectural analysis c--n support reuse, Inluding generative reuse, by focusing attention on higher
design levels and system frameworks. It will increase our understanding of the composition of systems
and the miationshO of system organization to system behavior.

* System organizations are constructed from subsystems and composition mechanisms. The issues of
system Construction are: the nature of the subsystems, function of the subsystems, Internal structure of
the subystems, the composition or integration mechanisms, and subystem operation and behavior.
Each of these may be dependent on the Implementation of a specific system, a family of closely related
sysem, or o many syM . Identifying and classiying the system functions that are common to a

* domain is a start in addmss th W issues. Architectural analyM then extends this identification and
classication across domaln In order to further resolve these architectural ismes. The ultimate oblective
of reuse is construction of beter stems mor productIvely. Undsnig these arctectural issues
will provide ft foundation for reuse to achieve is Nectlve.

In order to understand reuse for a domain, it is necessary to understand the architecture for systems of

125

4

that domain, to identity the 'fight' design abstractions which Involve a relationship between domain
independence and domain dependent characteristics.

SEI Architecture Studies
Several SOI projects are addressing software architectures. The SEI Software Architecture Project
[Shaweel. also known as the Vituvius Project1 is Investiating application independent architectural
elements and principles for describing, analyzing, and constructing software systems. The development
of a theory of architectural design Involves structures, specifications, virtual machine issues, design
abstraction, and rules combining system types, and imiplemnentation choices.

The plan of the project1 consists of two parts. FMrt a breadth-first analysis of system descriptions, across
domains, will be conducted to accumulate examples of subsystems and system organizations. These will
be categorized to identity architectural abstractions useful in describng system architectures. Second. an
in depth analysis of specific systems will be conducted to refine the architectural elements and principles,
kiplementation afternatives, comparisons, and criteria for architectural decisions.

The project is currently producing a survey of systems and software architectures. This survey has
identified abstract data typejUskov87], pipeslifer, layers[Obemdorff8J, clientfserverlSpector87]. central
repositoryEnnanSO]. and dependent processes(BarbacciS8IRosene61I as initial candidates for
architectural elements.

Another SEI project, DSSA2 project [Rlssmanl9J ILee8g]Ils taking a complementary approach to software
architectures. It is investigating specific domains to identity characteristic or recurring problems of those
domains and, then,formiulatlng canonical solutions to those problems. The canonical solutions are
represented as solution patterns for reus in those domains.

Domain Analysis Provides Architectural Insights
The various domain analyses for reus provide insighrt into the Influence of domain dependent
characteristics on system organtzatin. Architectural analysis wi provide constiucts in the form of
domain independent subsystem types, along with their integration mechanisms. The Imnplementation of
these type In a specfic application domain involves design and limlernentation choices whc
Incorporate more detail, including domain dependent characteristics. Typical choices involve data
structure representation, packaging or grouping of subsystems, distribution of control, performance and
resource usage, and allocation to hardware. Understardnig architecture includs not only architectural
elements and Iernecon mechanism, but Implemertaion alternatives and irriplications for use in a
particular domain. Example of alternatives and their impact are provided by various domain analyses.
The formulation of the MWgh architectural abstrations and their usefulrn to build beffer sysems
requires the Insights whc the domain analyses for can provide. Thus, while domauin analysis for reuse
and archilectural analysis differ In their emphiasis on domain dependence and Ide pendeKimce, they are

'MWVWa VhnMvW wu O %MW chmm , adve him 46 to 30 9C. aft wiub t. *** mvivk g work, a an voame vowie. on
-I swd usmal ftmy &W p aM .

'00.0* Spef 14,t tchc

126

5

mutually supportive, from different approaches, of the same goal, namely, building etter' systems.

Conclusion
Architectural analysis complements other types of domain analysis for reuse by providing a perspective

on higher design levels which enable systematic reuse; a perspective which encompasses both domain

independent and domain dependent characteristics.

On the other hand, domain analysis for reuse supports a study of architecture by providing understanding

of domain characteristics necessary for applying architectural abstractions to a domain. For software

architectures. it is not sufficient to just identify system structures, subsystem types, and techniques for

composing subsystems into systems. These must be accompanied by implementation details about

alternatives, comparisons, tradeoffs, and application criteria. Understanding reuse for a domain will help

obtain this knowledge.

Architectural analysis helps us build better' systems more productively. Architectural abstractions will

help reduce the complexity of systems, improve their reliability through well understood subsystems and

integration rules, and increase productivity of development and maintenance by enabling more software

reuse.

BIBUOGRAPHY

Barbacci, M.R., Weinstock, C.B., and Wing, J.M. Programming at the Processor-Memory-Switch Leve!.

In Proceedings of the 10th International Conference on Software Engineering, April, 1988.

CAMP - Common Ada Missile Packages. Final Techical Report, Vole. 1, Overview and Commonality
Study. Results, McDonnell Douglas Astronautics Co., September, 1985.

* Erman, LD., Hayes-Roth, F., Lesser, V.R., and Reddy. 0. Raj. The Hearsay-1l Speech-Understanding

System: Integrating Knowledge to Resolve Uncertainty. Computing Surveys 12(2):213-253, June, 1980.

Gish, J., Prleto-Diaz, R. Domain Analysis: Procedural Model Refinement and Experiment Proposal. GTE

* Laboratories, April, 1988.

Hayes-Roth, Frederick. Rule-Based Systems. Communications of the ACM 28(9).<921-93Z September,
1985.

HKt. E.F., Kluse. M., and Broderson, R. A Core Software Concept for Integrated Control. Journal of
Guidance, Control, and Dynamics 6(3)215-217. May-June, 1983.

Lee, K., Pinta, C., Risaman, M. Domain Spf Archecture Report. To be published in 1989.

* 127

6 0

Liskov, Barbara. Data Abstraction and Hierarchy. In OOPSLA '87 Addendum to the Proceedings. pages
17-34. The Association for Computing Machinery, New York, NY, October, 1987.

Oberndorf, Patrica A. The Common Ada Programming Support Environment(APSE) Interface Set(CAIS).
IEEE Transactions on Software Engineering 14(6):742-748, June, 1988.

Pamas, David L, Clements, Paul C., and Weiss. David M. The Modular Structure of Complex Systems.
IEEE Transactions on software Engineering SE-11(3):259-266, March, 1985.

Perry. J. Perspective on Software Reuse. Technical Report, CMU/SEJ-eW-TR-22, Software Engineering
Institute, Pittsburgh, PA.

Prieto-Diaz, R. Domain Analysis for Reusability. GTE Laboratories, Waltham, MA, December, 1986.

Rissman, M. GTE Government Systems Colloquium Presentation. GTE C3 Systems, Needham, MA,
March 1989.

Roder, J. Phoenix Architecture. SIGDA Newsletter 8(2):18-22, June, 1978.

Rosene, A.F., Connolly, J.E., Bracy, K.M. Software Maintainability. What It Means and How to Achieve It.
IEEE Transactions of Reliability, 30(3), August, 1981.

Shaw, M. Toward Higher-Level Abstractions for Software Systems. Proceedings of the Third International
Symposium on Knowledge Engineering, Madrid, SPAIN, October 1988.

Spector, AZ., et.a. Camelot: A Distributed Transaction Facility for Mach and the Internet - An Interim
Report. Technical Report TR CMU-CS-87-129, Carnegie Mellon University, June, 1987.

128

GEC OXS

Position Paper

* Software Reuse

Chris Taylor
Software Consultant
Airborne Display Division

* GEC Avionics Ltd., Rochester, England.

The Airborne Display Division (ADD) of GEC Avionics Ltd. manufactures display systems for
aircraft, using some of the most advanced technology in the field. Their primary product is Head
Up Display Systems, in which the company are world market leaders, supplying systems for most
aircraft types including all variants of the General Dynamics F-16 Fighting Falcon. Related

* products include Head-Down and Helmet-Mounted Displays. The author acts as a consultant
within ADD, advising on systems development and the efficiency of the software development
process.

These are the views of the author and do not necessarily represent those of GEC.

organization develops software in order to add value

to its primary product, software components are

* 1: Software Component frequently developed within the meaning of the

Technology - term 'Developed Exclusively with Government

Management Issues Funds" as defined by the cited FAR. That being the
case, the government generally enjoys unlimited
rights in the software produced. It is therefore
questionable whether the organization could
legitimately charge for any future use of that

1.1 component, and indeed whether the organization is
then free to use that component in products not
intended for the U.S. government. In this respect,

Procurement Policy current procurement policy provides little incentive
to organizations whose primary product is not

There are two aspects of government software.
* procurement policy which particularly influence

defense contractors developing software: the Software developed for the government is
ownership and usage stipulations of Federal generally prepared in accordance with DoD-STD-
Acquisition Regulation supplement 252.227-7013 2167A. Although the practices detailed in this
(Rights in Technical Data and Computer Software), standard do not preclude extensive use of software
and the development practices required by DoD- components, the lifecycle model and data

* STD-2167A (Defense System Software requirements provide little support for or active
Development). encouragement of software component technology.

A software development organization has an
incentive to produce reusable components only if the
organization retains the right to profit from any

* future use of those components. Where an

129

GEC~GE Avinis imteAirbrn O isay DOMs 0nGE V M
Roceter Kent

reusable software components. Such components
themselves have no intrinsic value, since software

1.2 serves only to add value to deliverable hardware S
systems. The concept of software reusability
presupposes that software components are expensive

Costs of Component Technology to fabricate. Where custom software can be
developed at negligible cost, perhaps by automatic

The marginal cost of developing a reusable code generation from a suitably formal
software component (compared with a "custom" requirements specification, the maintenance of a 0
component otfsimilar functionality) is largely code repository becomes unnecessary. Experiments
-asociated with the work necessary to ensure correct with a rule-based automated code generator have
operation of the component under all conditions. been carried out with some success. However, this
Where the operating environment of a component is technology cannot be applied as yet to complex
completely specified, as it generally is for custom components.
components, the manufacture and testing of the
component can be optimised for that environment.
Reusable components must be designed to operate in
a variety of environments, and testing of the
component must be extended to ensure correct 2 Do main Analysis -
operation within environments other than that of Avionics Displays
the product for which the component was originally
required. The more general the component, the more
costly this extra design and testing becomes.
Software to be used in real-time embedded systems
cannot be subject to incorrect or suboptimal 2.1
performance, since in many cases mission
effectiveness or operator safety are affected. Current •
tools for the development of software components do Domain Analysis
not provide sufflcient support to allow certification
of components. Within the overall domain of software

developed for avionics displays, there are a number
A reusable software component is an asset of of identifiable subdomains which can be used to

the organization responsible for its development, categorise software components.
and the decision as to whether a particular reusable
component is to be developed should therefore be 2.1.1 Oeratinr System Subdomai n
approached in the same manner as any other capital Embedded systems application software does
project. The use of the payback period for this not normally enjoy the services of an operating
evaluation is inappropriate, since it ignores the time system such as UNIX. Even where software is being
value of money and enourages short-termism. developed using the Ada language, a layer of
Discounted cash flow methods should be used for the software must be constructed which provides
evaluation. In particular, the Utimated met present framing or scheduling for other components, and
undue of the software component should be performs periodic built-in test of the underlying
determined. This has the advantage of focussing proming resources. Since now products are often
attention on the cost of capital for the project. Since based on a previously developed hardware
the development of reusable components often architecture, reusable operating system components
requires the services ofscarce resources such as can be developed which provide this functionality.
experienced design engineers, the determination of
the appropriate discount rate for the project can 2.1.2 Common Services Subdomain
reflect the impact of the development project on the All Displays product software shares the need
capacity of the developing organization. for common services such as mathematical routines,

digital filters, data validation and reversion
Since software is not the primary product of services, coordinate frame trandormations and so

ADD, the organization has not established an on.
economic incentive to develop a repository of

130

* GEC AON=

2.1.3 Communication Services Subdomain - above can be derived from aircraft attitude and
Avionic display systems are in general velocity data.

'Information sink" systems. The function of a

* display system is to integrate information from a Basic avionics display systems can be
number of disparate aircraft systems and present it constructed from combinations of the above
to the aircrew. Most of these aircraft systems have components, along with sufficient "cusLom" software
well defined interfaces, some being defined by to provide the display behaviour required by a
standard vendor-independent functional interfaces specific customer. Most display products in fact
(e.g. Inertial Navigation Systems and Air Data contain additional capabilities, such as navigational

0 Computers). Reusable software components can aids and the computation of weapon impact points.
therefore be developed to provide "protocol stacks"
which implement interfaces to these systems.

2.1.4 Disolay Format Subdomain
The pictorial format used to present 3: Reuse in Action

0 information to aircrew is determined by the
customer. Most formats are in fact very similar,
irrespective of the particular airframe for which the
system is being developed. Software components can
therefore be developed which provide object-oriented
implementations of specific symbols. For example, 3.1

0 the following symbol is widely used to represent the
aircraft velocity vector (where the aircraft is going):

The AdaHUD Program

In September 1988 ADD demonstrated a Head
Up Display (HUD) system at the Farnborough

*9 JAirshow in England. This private venture project
required the development of a software system
which would reproduce European Fastjet standard
symbology using unmodified F-16 C/D HUD
hardware. The software was developed entirely in

This pictorial "object" can be moved on the display Ada, using the InterACT compiler targetted to the
screen via the Cartesian coordinates of the center of MIL-STD-1750A processor. All the features of the
the circle. In addition, the symbol can normally be Ada language were used in this development,
either displayed or not displayed. A reusable including tasking, instantiations of generic
software component can therefore provide this components, and exceptions. The successful
display service to the application software. completion of this exercise demonstrated the

feasibility of Ada for avionics display purposes.
2.1.5 Displav Mechanization Subdomain
In some cases, the information necessary to The development of a new display system

manipulate display symbols is provided directly by (phipHUD). which would implement the ANSI
external systems. However, it is often the case that standard graphics language PHIGS was also under
the display system itself must generate the way. The implementation was entirely in Ada. In
symbology control information from more basic order to investigate the utilisation of PHIGS for
data. Standard solutions exist for many of these avionics displays. the development of a prototype
mechanixations. For example, the cartesian was targetted to a DEC VAXtationt, using the DEC
coordinates of the velocity vector symbol illustrated VAX PHIGS software. Components of the AdaHUD

software system were recompiled using the DEC

• ? VAX ad VMS are rgiusd trade marks 4th Digital Zquipnmt Crpem Uon (DEC)

131

4RGEC OMMM

VAX native Ada compiler, with new coinponents
being generated for the display format subdomain
which made use of PHIGS commands instead of the
proprietary graphics language used on the original
AdaHUD/F-16 development. Similarly, new 4: Summary
vwrating system cu-onents were developed to
allow the new application to execute above
VAX/VMS. Finally, 'communications subdoman"
components were developed to simulate the
activities of external avionics systems. Thus, the
PHIGS system prototype was constructed from 4.1
components taken from the AdaHUD program, with
new components being added where necessary, as
shown in the following diagram: Software Reuse in Display Products

The most active area of reusable software
component development at the present time is the

phigsHUD AdUD D display ; generation of components which can be used a
communication mechanization , number of times within a single project. There are

subdomain subdomain I essentially two reasons why this is the case. Firstly,
components components , an economic incentive exists for the project manager

... u. . a..... __ to develop reusable components which reduce thephigsHUD phigsHUD I total development cost of a product. Since there is no
operating system display format I attempt to justify investment beyond the time

subdomain subdomain I horizon of the project, discounted cash flow becomes
components components irrelevant and the decision as to whether or not to

----- . .-- make a component reusable becomes simply that of
AdaHUD common services ensuring payback within the lifecycle of the product.
subdomain components : Secondly, the external environment of the
................. components is well known, which therefore reduces

DEC native Ada DEC VAX PHIGS the costs ofdesigning and testing the components.
run-time kernel graphics software;

In order for more generally reusable
VAX/VMS operating system components to be developed, the legal aspects of

(on VAXstation II/GPX) rights in reusable software must be addressed, and... m ltr tn a dsfwr e eo m n r ciemilitary standard software development practices
must encourage non-waterfall lifecycle models. The
costs of generating custom software components
must then be higher than the cost of developing and

This approach was entirely successful, and maintaining reusable software components for the
demonstrated the power of reusable components in technology to become attractive.
systems development. Since the phipHUD system
was simply a prototype, the concerns over
component crtiflcation were not applicable. At the
time of writing, the deliverable phigsHUD software
Is in development.

132

WCharles Stark Draper Laboratory, inc.
555 Technology Square, Cambridge, Massachusetts 02139 Telephone (617) 258-2747
Mail Station 3A U1C2747@ORAPER.COM

May 19, 1989

Position Paper: Reuse in Practice Workshop

Pittsburgh, PA July 11-13, 1989

Submitted by Leigh Anne Clevenger, CSDL Ada Office

Can reuse really cut software development costs? Can significant amounts of software be
reused in a real project? How will design for reuse be enforced?

These are the types of questions we get when discussing Ada software reuse. Since reuse
and maintainability were important factors in the original adoption of Ada, answers to these
questions should exist. The fact is that definite answers to these and other reuse questions are not
yet available.

The Ada Office at the Charles Stark Draper Laboratory, Inc. (CSDL) has been looking into
reuse issues for the past few years. In particular, our inquiries have concentrated on reuse of
software designed to be run on embedded systems, useful library taxonomies, and quality
evaluation of reusable components. This position paper describes a reuse task for NASA we are
currently performing, our in-house Ada repository, and some other ways in which CSDL is
participating in Ada reuse.

NASA Reuse Task: Reusable Software Flight Certification Reuiremnts"

The Reusable Software Flight Certification Requirements task is being performed by the
CSDL Ada Office for the National Aeronautics and Space Admini strai-n (NASA) Level II office
in Restin. VA. The task is administered through Johnson Space Center in Houston, TX We
began on March 1, 1989, submitted the first part of our report on May 1. and will complete this
phase of the task on September 29, 1989. We anticipate the task will continue for 2 more years.

* The following is an introduction to the task, the task description and approach, and some questions
we were asked at the first task review at JSC

Task Introduction

* The use of reusable Ada software components in the development of flight software has the
potential of providing major cost savings to the Space Station "Freedom" Program (SSFP).
NASA's Sof~twr Support Environment (SSE) will provide a library of such reusable Ada
componentswihwl be obtained from softwaredvlpdb SSFP pnme contractoirs WAd from
other non-NASA Ada software development or9 nons. How..., the use of reusable Ada
software components in SSFP flight systems requres that the componts be flight qualified prior

* to their incorporation into the libirary. This study will identify flight software qualification criteria
and the associated process that must be implemented in order to qualify reusable Ada software
components for use in onboard application software.

* 133

Task Description

The task will perform the following and document the results:

1. Describe how qualification of reusable Ada flight software fits into plans for the Software
Support Eni-onment and the Space Station "Fr cdom" Program.

2. Develop a base set of requirments, assumptions, and quality criteria applicable to reusable
Ada flight software.

3. Determine the quality attributes (criteria) that reusable Ada flight software should have for
entry into the Software Support Environment reuse library as Flight Certified Ada Parts (FCAPs).

4. Define "classes" of flight software that will group reusable components based on an
evaluation of their overall reliability and performance.

S. Define the process that will be used to apply qualification criteria to potentially reusable Ada
software.

6. Identify and prioritize candidate components for the qualification process.
S

7. Apply the qualification process to representative software components from the list of
suitable candidates.

8. Identify tools and future work needed in the area of flight qualification of reusable Ada
software units.

Task Approach

In order to achieve our goal we intend to use, as a reference base, surveys of existing
software qualification criteria, current Ada repository software qualification procedures, quality
requirements proposed for reusable Ada components in technical literature and reports, and
discussions with flight software developers and quality assurance specialists.

Initially, "classes" of flight software will be defined. This will enable the grading of each
reusable component based on the criticality of its applicaion within the SSFP. Al reusable Ada
parts designated for use in the same class of an application will have to be certified to at least that
class leveL Higher levels of certification will require a systematic progression of more stringent
criteria than lower levels of certification. For each class of application, we will determine the
attributes that Flight Certified Ada Parts (FC s) should have. This will entail the identification of
quality and other criteria for flight software. The process used to apply the criteria to candidate
components within the Software Support Envionment Development Facility will then be defined.
Representative software components will be identified and prioritized for testing the process
model In this way, the process model will be verified and validated.

Quetons Raised

The following are examples of questions raised during or first review of this task:

What is the difference between "Common" software and "Reusable" software?
Common software is the term for large collections of software which are developed
to be used intact by mo= than one segment of a project.

2

134

Should we attempt to qualify other software products such as requirements,
designs, etc., or just Ada source code? * Should we only qualify software products
written with reuse in mind?

What assumptions can be made during the evaluation of the quality of reusable Ada
components?

What is the estimated reduction in cost and time which reuse will provide?

0 Who will make people reuse software? What about possible cost incentives for
reuse? A special effort to follow up on reuse practices is needed.

I CSDL Ada Repsitory

* In looking out for CSDL's own reuse needs, last fall we developed a prototype Ada
repository, initially populated with the CAMP parts and some reliable CSDL-developed
components. This database is on-line for use by any Ada programmers and designers at CSDL

The issues addressed in developing the repository included taxonomy definition and
automated database construction. The taxonomy for the CSDL repository was developed with the
embedded systems domain in mind. We were also limited by our library management system to a

* fixed database entry smcture. As this is purely a prototype effort we didn't feel justified in
purchasing a new database system, and instead utilized an in-house version of IBM's Info
database. Searches are performed on keywords entered by the user. Since the CAMP Ada source
code is written in a standard format, we developed an automated process for getting source code
attributes into the database entries.

Other Reuse at CSDL

The CSDL Ada Office has submitted a proposal to the Air Force to write a methodology to
guide the development of maintainable avionics software for advanced avionics architectures, and
to develop a second methodology to direct maintenance and support activities including effective
use of Ada reusable components. We are frequent contributors to seminar and conference sessions
on reuse, most recently the SIGAda Reuse Working Group meetings at Tri-Ada in October 1988,
the SIGAda meeting in California this spring, and the SE 1989 Affiliates Symposium.

In all the work we have done on reuse, people are enthusiastic at the prospects of cost and
time savings, but want evidence that it works before they make the investmentL By attending the
Reuse in Practice Workshop we hope to be able to focus on implementation issues with others
involved in reuse efforts. We also welcome the chance to share our research experiences with
others.

A core group of computer engineers is supported by CSDL to examine important issues
related to Ada and software engineering. Members of the "Ada Office" am currently participating
in projects ranging from compiler and tool evaluation to full life-cycle software engineering to
implementation of hard-deadline real-time embedded systems. Ada Office personnel include
Brooke Cen, Anne Clough, Sidney David, and Leigh Anne Clevenger.

3

0 135

Towards a design philosophy for reuse.

E.M. Dusink
T.U. Delft

Faculty of technical mathematics and informatics
Julianalaan 132

2628 BL Delft
the Netherlands

1. Integration of reuse aspects in the reuse process

As a necessary precondition for reuse to happen, the following topics of reuse
should be considered:

1. the type(s) of reuse, building block approach or transformational
approach.

2. the level(s) of reuse, code or design,

3. a design method which fits with the kind(s) and level(s) of reuse wanted,

4. tools which support the design method,

5. support for the actual construction of software.

Some of the topics are addressed in literature. However, no integration of
the topics into a single framework was found. Our goal is to present a reuse
framework in which all topics are considered and addressed in a coherent way.

To reach this goal a project on reuse was started at the T.U. Delft, in
which was chosen for the building block approach, including white box and
black box reuse. In this project we want to establish both reuse on source-
code level and reuse on design level. By choosing these approaches new ques-
tions arose: what has to be the components form and should be its interface
look. The question about the actual construction of software has to be
transformed into a question how to connect the components.

Our own interest in reuse started from an Ada background (Dusink], we
built our own Ada compiler [van Katwijk], we did a study to transform Algol 60
to Ada automatically [Huijsman], and we give courses on Ada and software
engineering. Both the choice for components based reuse (building block
approach) as well as the choice for an object-oriented design method were
influenced by this background.

In this paper we address: a reuse-based design method in which our ideas 0
about components are incorporated, design supporting tools, and we present a
short description of our reuse project.

136

-2-

2. A software design method oriented towards reuse

Design methods reported in literature are seldom tailored towards reuse,
although object-oriented design methods claim to have reuse as a side effect.
(In (Deutsch] even three forms of reuse are claimed for object-oriented
languages.) However, in none of these articles the design method is put in a
framework.

I

We based our design method on the observation that experienced applica-
tion domain programmers work with a set of mental primitives of the applica-
tion domain. (In our case, the application domain is systems programming, and
the reused components are related to the UNIX system routines.) The importance
of this domain knowledge is shown by a.o. (Levy]. We concluded that our
design method had to be domain oriented or should cover the process of the
acquisition of domain knowledge. We chose for incorporating a method of
acquisition of domain knowledge. After all, methods for acquisition of domain
knowledge are less sensitive to changes in the application domain. In this
way the resulting design can easily be mapped to existing components.

Apart from being oriented towards actually reusing software, the design
method should be such that new pieces of reusable software are a result as
well. According to the literature mentioned, an object-oriented approach
should do the trick.

The kind of the stored components has to be compatible with the kind
looked for during the design process and with the kind delivered by the design
method. In this way unnecessary transformations are avoided. Already exist-
ing reusable code should not be excluded from reuse by the design method. As
existing code has different forms, from algorithms via abstract data types to
abstract machines, a small problem rose.- But, as in object-oriented design
all three forms are manipulated it turned out to be a non-problem.

For our design method we assume the existence of a repository. The glo-
bal outline of our design method, in which we considered the issues mentioned
in [Ladden], is as follows:

Step 1: A software requirements document is made.

Step 2: Orientation on the application domain as a whole, browsing of the
repository, try to get an idea about the usual primitives/blueprints common
for the application area.

Step 3: First, the entities on the top level are looked at. These are the
problem-space entities.

0
1. An informal strately.

The top-level entities are defined, with their functional primi-
tives. Then the repository is queried to see if there are useful
componets. Probably a rearr anent of entities and their func-
tionl primitives over objects is necessary or other objects have to
be chosen.

2. Formalize the strategy
The components found in step 3.1 are mapped on the defined objects.

137

-3-

The result of step 3 can be one or more of the following:

1. designed objects for which components from th6 repository with the same
s ecification exist. If more than one component exists for an object,
one will be selected at a later stage.

2. objects for which components from the repository with almost the same
specification exist, but some tailoring is needed. If more components
exist for one object, one will be selected at a later stage.

3. objects for which there are no components in the repository with the
desired specification. These objects have to be implemented later.

Step 4: Detailed design. This step is essentially the same as step 3. How-
ever, now a complete architecture is designed.

1. Develop an informal strategy. A complete architecture is defined,
thus the problem-space entities plus the necessary solution-space
entities with their functional primitives and thei: interconnec-
tions. The repository is queried to find matching components.

2. Formalize the strategy. A formal search based on the more formal
specification of the objects that is the result of the former steps
is done.

Step 5: Implementation and testing. The objects for which no components were
found in the repository are implemented. If the transformation step from
class description to source code is too large a decomposition of these objects
can be done according to step 3 and 4. If in step 3 and 4 more than one com-
ponent was found in the repository a choice has to be made now. Furthermore,
tailoring needed for the components mentioned in step 3.2 is done.

Criteria to be used in the forming of classes are:

- minimizing the number of connections among classes

- alnmizing the flow of information among classes

- getting logically coherent classes 0

A rationale for all three criteria is that they determine the ease with which
the architecture of the system can be understood as well as the ease with
which the functionality of a class can be understood.

A strong precondition for the design method to work is that the stored 0
components have to reflect at least the basic primitives of the application
domain(s). This can be obtained by surveying existing software, detecting
objects in it and extracting them. Several systems on the same application
domain have to be viewed and similarities marked down. The objects detected
have to be made more general before putting them as reusable components into
the repository. It must be recalled that making components more general does 0
not imply changing them into reusable components. The ease of reuse can
become less by complexer interfaces, etc.

138

-4-

3. Design supporting tools

The terminology used in a repository and its associated facilities should be
compatible with the terminology used in the design method. The facilities
should also support the design method. Our support tools were derived from
the design method. In the following we concentrate on tools working on the
repository.

The following tools are needed:

- a browser to support step 2 of the methodology.

- a faceted scheme query system (similar to the one proposed by [Prieto-
Diaz]) to support step 3.

- a related system, with which related components to the ones already found
can be given, to support step 2 and step 3.

- a formal specification system is needed to support step 4. This system
has to work on the repository as a whole as well as on an already
selected set of components.

- tools to allow inspection of components, for both the informal as well as

the formal strategy.

- tools to support tailoring.

We believe that the repository, together with its facilities, should not form
a small isolated environment but should be integrated in a software engineer-
ing environment.

The components can be stored in one or several repositories according to
the application domains. Component distribution over repositories is tran-
sparent to the user, unless the user asks for a special application domain.

We do not use the ideas of Prieto-Diaz of using conceptual closeness and
fuzzy logic to give an ordering of found components as a help in choosing the
best cn2ponent. This ordering depends too heavily on the users' ability to
give weights to closeness, it is therefore very liable to give only a false
impression of helpfulness.

Procedures should be established to guarantee the quality of the com-
ponents in the repository. Our solution is to have one central repository
with a responsible librarian. Of course, such an approach is based on company
policies.

4. Our experience with reuse

At Delft, a PhD student is evaluating the design method by applying it at sys-
tea software. A repository, together with its facilities, was designed
according to the statements mentioned before. It is currently being proto-
typed by some students. Apart from evaluating the design method and prototyp-
ing the repository, guidelines about the appearance of components are made.

139

-5-

This is also done by a PhD student. These guidelines are being evaluated
together with the further evaluation of the design method.

Points of research at this moment are a module interconnection language
that can be used with the repository and the reuse of designs.

5. References

[Deutsch] Deutsch, L.P. (1983) Reusability in the Smalltalk-80 Pro-
gramming System. Proc. of the workshop on reusability in
programming Newport, RI. September 7-9, 1983

[Dusink] Dusink, E.M., Katwijk, J. van (1987) Reflections on reus-
able software and software components. In: Ada com-
ponents: libraries and tools. Proc. Ada-Europe Interna-
tional Conference, May 1987. pp. 113-126 Stockholm 26-28
May 1987, Ed. S. Tafvelin, The Ada Companion Series, Cam-
bridge University Press 1987

[Huijsman] Huijsman, R.D.. Katwijk, J. van, Pronk, C., Toetenel, W.J.
(1987) Translating Algol 60 programs into Ada: Report on a
feasibility study. Ada Letters V 7 (5), pp. 42-50,
September/October 1987

(van-KatwijkJ Katwijk, J. van (1987) The Ada- compiler: On the design
and implementation of an Ada compiler. PhD Thesis, TU
Delft, the Netherlands

(Ladden] Ladden, R.M. (1988) A survey of issues to be considered in
the development of an object-orieuted development metho-
dology for Ada. ACM Sigsoft Software Engineering Notes V
13 (3), pp. 24-30, July 1988. 0

(Levy] Levy, P., Ripken, K. (1987) Experience in constructing Ada
programs from non-trivial reusable modules. In: Ada com-
ponents: libraries and tools. Proc. Ada-Europe Interna-
tional Conference, May 1987, pp. 100-112 Stockholm 26-28
May 1987, Ed. S. Tafvelin, The Ada Companion Series, Cam- S
bridge University Press 1987

[Prieto-Diaz] Prieto-Diaz, R., Freeman, P. (1987) Classifying Software
for Reusability. I= Software V 4 (1), pp. 6-16, January
1987

140

-1-

Ada and RESOLVE:
Toward More Reusable Ada Components

Stephen Edwards
Institute for Defense Analyses

The current interest in software reuse had led to the reexamination of modern
programming languages. Ada, the computer language adopted by the Department of
Defense, has come to the fore under this issue, especially because of the DoD's interest in
software reuse. As a result, weaknesses in Ada in this regard have been observed
(Gargaro 87, Muralidharan 89]. Many research efforts are trying to address these
problems, either through proposed Ada 9X changes or through completely new
languages. Unfortunately, Ada revisions may be restricted in scope to maintain backward
compatibility with current Ada code and to avoid drastic revisions to current compilers,
while new language efforts are discounted because of the "language in a vacuum"
problem-incompatibility with software written in current languages and little tool
support.

A possible answer to this dilemma is to create a new reuse-oriented language with a
compiler that produces target code in a commonly used high-level programming
language, such as Ada. If it is possible to ensure that all of the benefits gained by using
the new language are captured in the target language representation, then it is possible to
have the best of both worlds--freedom from current language restrictions while
maintaining compatibility with the current software base.

In pursuit of this idea, the language RESOLVE, currently under development by Bruce
Weide at Ohio State University, seems to be a good candidate (Harms 89a, Harms 89b].
This language is aimed at providing the following:

1. A complete encapsulation mechanism,

2. A mechanism for the efficient implementation of all language features,

3. Semantic, as well as syntactic, specifications,

4. The capability of multiple implementations per specification, and

5. Verifiability of implementations against the semantic specification.

These points address the major concerns about the use of languages such as Ada for
writing reusable software. RESOLVE is designed around a programming model which is
very different from that used by more traditional computer languages and which
encourages the exploitation of these capabilities for producing reusable software.

To demonstrate how RESOLVE addresses these issues, consider an example program unit
which is a candidate for reuse. The unit chosen for this example is a generic stack
module, often used in text books to demonstrate modular design. Figure 1 shows a

141

-2-

straightforward Ada specification for this unit.

generic
type T is private;

package BoundedStackTemplate is

type stack is private;

function new-stack (max-size : in integer) return stack;
- for initializing at declaration

procedure se-umaxsize (s : in out stack; max-size : in integer);
- for dynamically resizing

function gct_maxsi= (s: in stack) return integer;,
function getsize (s: in stack) return integer;,
procedure push (s : in out stack; x : in T);

- raises STACK-ERROR when s is full
procedure pop (s : in out stack);

- raises STACK-ERROR when s is empty
procedure pop (s : in out stack; x : out T);

- raises STACKMERROR when s is empty
function top (s: in stack) return ,

- raises STAC&EROR when s is empty
function isempty (s : in stack) return boolean
function isuil (s: in stack) return boolean;
procedure free-stack (s : in out stack);

- for reclaiming space

stackerror: exception;

private
type rastackjtype is array(positive range <) of r,
type stack is acce real_stacktype;

end BoundedStackTemplate;

Figure 1-BoundedStakTemplate specification in Ada.

Although this sems to be a very reusable Ada generic, i practice it may often be
unsuitable. If fails to meet all five of the criteria above.

Complete Encsulaon: Inidaaon and Finalization

The Bounded StackTemplate package suffers fir inadequate encapsulation because it
cannot enforce the inialization or finalization of objects. Fst, the type stack is not
adequately encapsulated. Although there is provision for initializing this type at its
declaration with new stack (or later, with set maxrsize), the author of this unit cannot

142

-3-

* enforce its initialization and, therefore, cannot be assured that all objects of type stack
start out with safe values. Likewise, there is no way the author can enforce finalization
via the freestack routine. In some cases that may only mean space is not reclaimed, but
in other cases (such as data structures maintained with associated reference counts),
internal data structures may require finalization. Second, the parameter data type T is not

0 sufficiently encapsulated. The only operations defined for objects of type T are
assignment and equality comparison. There is no way for the package
Bounded Stack Template to ensure correct initialization of any objects of type T
(although stacks may be implemented safely without this capability). In addition, when a
non-empty stack is destroyed, via free stack or set max size, there is no way for the

* package to finalize the remaining elements. There is also no way to finalize stack objects
(or stack contents) when they are overwritten by values returned from new .tack

In addition to the above restrictions, notice that only types for which the builtin
assignment operator is appropriate can be passed into this generic. Because of the
semantics of push and top, the assignment operator is used to make copies of objects of
type T. If T were an access type which was supposed to represent a complex data
structure like a binary mre, then a separate copy function would also have to be passed
into the generic in order for the correct semantics to be implemented (alternatively, the
semantics of the procedures could be altered to eliminate copying in this instance).
Furthermore, there is no copy operation supplied by this package for the type stack,
prohibiting the use of this type as the parameter for any further generics which require
true copy semantics, since assignment on objects of stack type would not suffice. Thus, a
stack of stacks cannot be created with this specification (and provide the appropriate
semantics).

Efficient Implementation

The main limit to implementation efficiency in this unit is the copy semantics associated
with the push and top routines. Push places a copy of its input parameter x on the stack s,
and top returns a copy of the top value of the stack s. The copy operation is inherently
linear in the size of type T, and thus nothing about the performance of the package
Bounded Stack Teplate can be said independently of its instantation parameters. In
addition, the cost of true copy semantics for large data strctures will be too high for this
unit to be reused for such stucturn This problem may be remedied by either removing
the copy semantics, or providing two sets of push and pop roai .- on with copy
semantics, and one with pi consme semantics.

9Sanic Specifcaions

Since Ada specific wos are purely syntactic, it is clear that no semantic behavior is
spedfied in this unit (beyond the parameter modes). However, a full descriptio of the
behavior is necessary in order for a component user to understand and uidize such a
reusable unit. For a well-known abstraction like stack, this is not a significant problem,

* but for less common abstractions, it is vital for a behavioral description to be available. If
the behavioral description is formal, then it is not only less ambiguous for the user, but
tools may check that the user is actually employing the abstraction correctly (L e., meeting
the preconditions). In addition, semantic specifatons are necessary to provide

143

-4-

verifiability, which is discussed below.

Muliple Implementations

This Ada specification precludes multiple implementations for the same abstraction. In
some cases, it may be more efficient to use an array for a stack, such as when indexed
accessing is required. In others, a differet implementation may be useful, such as using a
linked list when the size fluctuates dramatically and often. Having a single specification
and many implemenations for such a unit is desirable, especially when the
implementation can be chosen at instantiation time. The declaration of the type
real stack type in the private part of this specification could be placed in the body,
allowing multiple implementations to be written for this unit. Unfortunately, at
elaboration time Ada allows only one body for each specification. If there are multiple
implementations for a unit, only one may be chosen for all instauations. Even if
multiple implementations are provided, only one can exist at elaboration time. Thus, a
compilation unit could not instantiate this package multiple times, using different
implementations as appropriate. There is currently no workaround for this in Ada, other 0
than having a separate specification for each implementation.

Verifiability

The problems of verfyig Ada code are well known. In addition, the lack of semantic
specifications does not provide anything to verify the implementations against. Lack of 0
verification does not prevent reuse, but does raise its cost. This is due to the fact that it is
less desirable to rems code of unknown quality, and is more costly to debug a project
when the bugs cannot be isolated to only new code. Semantic specifications and
implementations which are verified against them would help in alleviating this problem.
Unfortunately, the cost of developing these tools for Ada may actually outweigh the 0
advantages.

A RESOLVE Eample

Figure 2 shows the same BoundedStackTenqlate in the language RESOLVE. It
A each of the shortcomings illustrated in the Ada example. •

40

0

0
j44

-5-

0 module Bounded_StackTemplate (T : type)
theories

sringheory, numbers
provides

type stack is (items : swing(T), maxsize : integer) = (A, 0) (inidally empty *)
0 procedure setmaxsize (alters s : stack, preserves maxsize : integer)

requires maxsize > 0
ensures s.iems - A and s.max_size - maxsize

function getmaxsize (preserves s : stack) returns maxsize : integer
ensures max-size = s.max-size,

function getsize (preserves s : stack) returns size: integer
40 insures size - I sitems I

procedure push (alters s : stack, consumes x : T)
requires I sitems I < Lmax..size
ensures ims - #s.itCMs o #X

procedure pop (alters s: stack)
requires sitems /=A
ensures 3 x : T, #s.items = sitems o x

procedure pop (alters s: stack, produces x : T)
requires sitems /= A
ensure #s.items = s.items o x

function isempty (preserves s : stack) returns empty : boolean
ensures empty iff s = A

function isfuUl (preserves s : stack) returns full : boolean
insures full iff I Litems = smax-size

end StackTemplate

Figure 2-BoundedStackTemplate specification in RESOLVE.

* Complete Encapsuaion

In RESOLVE, the predefined operations for every data type are swapping, initialization,
and finalizatio. This is true for all types, and it is the presence of these operations for
every type which allow for compl encapsutioL All other operations must be
declared explicitly by the audor of typhe A parameter passing is done by swapping,
rather than by value, so there is no implcit copying by parameter passing. Al objects ar
aomaicwaly initialized when they ae declared and all an also finalized before the block
is exited. Note that all of these mechanisms can be accomplished in Ada by stict
adherence, to guielines.

* Efficient Implementaion

Since the fundamental data movement operation is swapping rather than copying, there
are no copy semantics in this version of the Bounkd_$tackTemplahe. Although there
are no functions in this unit, note that RESOLVE functions do not imply copy semantics

145

-6-

for their return values. Beture the assignment, the previous contents of the receiving

variable ar finalized and then the value returned by the function is swapped in to the
receiving variable., rather copied over the old value. Because there is no copy semantics,
it is possible to implement this unit efficiently for all types T.

Semantic Specificatons

The pre- and post-conditions are specified along with the syntax of each procedure.
Functions are also prohibited from having side effcts. Thus, a formal behavioral
description is provided without duplicating the algorithm. The user always has an
unambiguous source for clarifying his u nnding of the operations of each operation,
regardless of the particular implementation requested*. 0

Multiple Impkmemnadons

Note that the type definition of type st~k describes the type in a mathematical notation,
and that all pre- and post-conditions are in terms of this mathematical definition. This
allows the type's meaning and the behavior of its operations to be described inabstract
terms, without specfyig the actual implementation of the data type used to achieve these
semantics. This allows for multiple implementaions which model the same absuact
properties to be developed. RESOLVE specifically allows multiple implementions for
the same specicaton, but all implementaions must match the semantics given in that
specification.

Vvnflabilizy

The presence of semanti specifications allows for the possibility of verifying
implementions against hem. In addition, RESOLVE has no assignment, so it is
impossible to "destroy" values. RESOLVE also lacks pointers, so aliasing is not
permitted. This, plus automatic iniaUzation and finalization for all data types provides
the groundwork necessary to support verification.

Ada as a Target Language

The key to using Ada as a target language for RESOLVE is that, despite the differences in
the natural programming models supported by the two languages, the complete semantics
of any RESOLVE module can be expressed in Ada (although some may be more painful to
express than others). Mo.ovec, all RESOLVE constructs have an efficient Ada
il nion, with the exeption of procedure vaiables. Since procedure variables
may be implemented in Ada either portably or efficiently, but not both, their
implemntaon may be ineficient The pamsing of instance, pm eaes (pasing
packages, such as instantiated generics, as parameters to other generic modules) may
incur greater compilaion time, but will still ran efficiently.

Umfommaey, as absu dam types become mars complex, the fma spec of ther
openkon tecom ea ca ka cap iber . Tbw speicadm .l maintai eir tool-bmd bemefim

146

-7-

Ada does allow both the module writer and module client more flexibility in some areas
than RESOLVE. Some examples of this flexibility are access types and full type visibility,
neither of which is available in RESOLVE. It is the use, not just the existence, of this
flexibility that prevents one from achieving the reuse goals listed above (these goals could
be achieved in Ada by the strict use of enforced "programming conventions" governing

* the use of these language features, however the required conventions are often seen as too
cumbersome). However, Ada's visibility control mechanisms are strong enough to allow
the automatically generated code for a RESOLVE module to be locked inside a package,
ensuring that these reuse goals are achieved inside the unit, and eliminating tampering
from the client. Figure 3 shows a possible Ada implementation of the

0 Bounded Stack Template specification.

with strin.theory, numbers;
use suing._teory, numbers;
generic

type T is limited private;
0 with procedure swap(l, r: in out T); - these 3 routines

with procedure initialize(x : in out T); - are the "predefined" operations
with procedure finaize(x: in outT); -ontheencapsulatedtypeT.
realizaion-id: string :- "Standard";

package BoundedStack-Template is

- Note that functions in RESOLVE translate into procedures
- in Ada where the result is "in out". This is so the procedures can
- finalize the variable to contain the result before placing
- the answer into it (and also because the types are limited

0 - private, so assignment isn't allowed).

type stack is limited private;
procedure swap(l, r: in out stack); - these 3 routines are
procedure initaliex : in out stack); - the "predefined" operations

* procedure finalize(x : in out stack); - on the type stack.

procedure setmax_size (s : in out stack; max-size: in integer);
-requires maxsize > 0
- ensures s.items =Lambda and s.max-size = max-sze

0 function get~maxsize (s: In stack) return integer
- ensures maxsz= a smax-size

function get-size (s: In stack) return integer,
- ensu size- I LitetuI

procedure push (s : in out stack; x : In out T);
-consumes x

- requires I items I < smaxsize
- ensures Litems - #Sitems o hX

procedure pop (s: in out stack);
- requires Litems /-Lambda

147

-8-

- ensures ThereExists x : T, #siems - sitems o x
procedure pop (s : in out stack; x : in out T);

- finalizes current value of x, then
- requires Litems /- Lambda
- ensures #s.items = s.items o x

ftinction isempty (s : in stack) return boolean;
- ensures empty iff s-Lambda

function isfull (s: in stack) return boolean;
- ensures full iff I sitemsl-s.maxsize

private
type real-stackype;
type stack is access realstack-ype;

end BoundedStackTcmplate;

Figure 3-BoundedStackTemplate specification in Ada.

In addition, clients writen in Ada will be able to reuse compiled RESOLVE code as easily
as other RESOLVE modules. Of course such cients will have to follow certain
conventions which are required by the RESOLVE module (such as initializing and
finalizing dam elcmts) but which am uneforceable from within the RESOLVE module
itseZl In addition, RESOLVE s can be wrinen for lower level Ada units
which obey RESOLVE conventions (L e., provide the required primiave operations on
new data types and follow the required progrmming guidelines), and then higher level
RESOLVE units can rem this code. [Harms 89a] gves the best overview of the
RESOLVE programming paradigm, its differences from more traditional approaches, and
efficient implementation methods.

148

-9-

REFERENCES

* (Gargaro 87]

Gargaro, Anthony, "Reusability Issues and Ada," IEEE Software, July, 1987.

[Harms 89a]

Harms, Douglas E. and Bruce W. Weide, Types, Copying, and Swapping:
Their Influences on the Design of Reusable Software Components, Ohio State
University, March 1989, OSU-CISRC-3/89-TR13.

[Harms 89b]

Harms, Douglas E. and Bruce W. Weide, Efficient Initialization and
Finalization of Data Sructures: Why and How, Ohio Stare University, March
1989, OSU-CISRC-3/89-TR1 1.

[Mualidharan 891

Muralidharan, S. "On Inusion of the Private Part in Ada Package
Specifications," Proceedings of the Seventh Annual National Conference on
Ada Technology, March, 1989.

[uidhan 881

rlidharan, S. and Bruce W. Weide, On Distributing Programs Built from
Reusable Software Components, Ohio State University, November 1988,

* OSU-aSRC- 11/88-TR36.

(Weide 86a]

Weide, Bruce W., Design and Speci cation of Abstract Data ypes Using
OWL Ohio State University, January 1986, OSU-CISRC-TR-86-1.

(Weide 86b1

Weide, Bruce W., A Catalog of OWL Conceptual Modules, Ohio State
& University, January 1986, OSU-CSRC-TR-86-2.

149

A Model Solution for the C31 Domain
Charles Plinta.

Software Engineering Institute

Introduction

This papert briefly describes a specifc porton of recent wark performed by dfe Domain Specific Softwar
Acimcnze (DSSA) projec at the Software Engneeing JnstiM (SE!) - t development of a model

soluion for Memge Unisltio ad Validation in the C31 domain. Based On this eXpMence and our
involvement. with programs in fe C31 domain, futume consaideana ae described. Thes considemtions
involve idetitfyin potential models within a doman and aking -comedations for developing and
documenting model solution that will enable, the model solutioa to be reused.

Background

The work was perfoirmed in te C31 domain by Charles Plinra Kenneth Lee, and Michael Rausmn,
s-pecifically in Conjunction with the Gaice Sentry Propum. Giuniz Sentry a a phased hardware and
softw=r eplacmen of the systemi die Cheyenne Mounlain complex of NORAD. The DSSA projec
uzPPO' die ProPan office by attending revew and Providing advice on echnical issues. In addition, the
DSSA pmoj=c memibeus patcipate. in die design discussions and woking group meetings with te lead

deinr. AS Pn Of our involvement die DSSA pojec developed a model solution to perform Memgep
Unsaon and. validation (MTV). The MTV model a cmnnly being used by Granite Sentry Phase II in
its des ignsecification sid die W model solution wil be used to implement dotn portion of the design.
The W model solution is also being used by other prupsins developng sysems in die C31 doman.
Strategc Command and Control System (SCCS) and MCCAISS.

An Overview of C31 Systems

Pigum I show a high level block ding.. a(a typical C3! system The Gauway sends memga to ad
fueuves 01e1g101 from all exaisl systems. MIe Geway is an interface between die C3! system and a
Odie sstms. Mlessages:2 we commumcatd between systems. The 1 nsge ente ad leave the C31
syte as C.a re, aut~ of doth rmbation whon forums =s defined by die eteral systems.

The Mbsion Procaeo moinis a view of dhe w=ebased on do view (cauAl Paprewatadoas)
Provided by the other sms. maki wuld view is kqnz in anana reprwuadeem to allow Vprocesing of
the inforano based upon the C31 sya1e mission -eq1ismesia I bis view is available to other systems
via eunat repwmiu aots ft d on sod the usir via wr sepmmtow of die Inforation

4W weis Woupimi by doe U.1 Dwnummd Didm. Mw vimg md ==d amonmd is ddw aml Item d
do a*$) ad d M be'ua a I . QGW d ihd. *w GWNpuiu or imp" d6 CiM.Em Miii

Ui ate * U.S Ahr Fam. d s ate Dahuin d rda U.&. Owm.

A mp mis mu in Wanwimd

150

The user interface (User I/F) provides a window into the mission processor's view of the world. It presents
all or a subset of the world view, as requested by the user, in a form that is understandable to the user. The
user can also add information to the Miu Procesors view of the world. The russags emer and leave
the User IF as use representations of the informaion whose format is ur€ersandable to a user.

The Journal is a storag device used for "safe" strae of all repsentations of messages for recovery,
analysis, and testing puposes.

Finally. Figure 2 shows a simple example of the different repren a ons of information in a specific
,msage.

S S

wm-

Fiur L C ! Syeb Blc Daa

S
5. "

E t alRep ri ut d
"'&/1810244/1Cc.>'

Masge : (LoMsati n letess 315,

* M~tmute 44),
Status -> Opezuticsa.) ;

UseUse Usermtd

- Pet.ezuomA/2 1 8 2 44 O pezatozaa

Figure ReMereepueado

Maae:0Lcto >Ptzo m
Date -> ("La Da 11 ,

The Problem

Based on an analysis of Granite Sentry specifically, and the C31 domain in general, We arrIved at the
following MWV requirements.

1. Support real-time activities:

a. TrAnslation and validation of extena message rpseatosto internal message
repxeentations (aid vise-veina) to support mission processing.

bS. Translation and validation of all message represetations to support writing to a journal.
2. Support non-real-ime activities:

a. Generation of external mssage representations to support simulation scripts for training

b. Generation ofanlmessage-rpopsentations to support system testing.
c. Tkanslation and validation of all message representations to support reading from a Journal.

3. Support interactive activities:
a. Translation and validation of external message representatons to internal message

represntations (and vice-vra) to- support manual entry of information along with
presentation and correction of invali information received.

b. Translation and validation of user message representation to iniernal. messge repewntanions
(and vice-versa) to suppor manual entry of information along with presetation and correction
of invalid information received.

The MTV Model Solution

This pape will nom attempt to go into die details of tie solution because we are limited on space:3. Instead,
we will present an overview of one of the two parts ot die MW model solasimr the typecaster model
Solution.

Typecaster Model Functional Description
The typeCastr model provides the capabilit to convert between either the user reptesenta n a or universal
rqeetaIon' of a message aid die internal representeon of a messge. The conversion entails a
zul-ine validation that include syntactic: analysis of the range of values poossie for tie element and
checing of MrY inter-clement dependencies. If a problem is found. tie conversion V, mc ss is smoppedI aid
tie caller is notified. The typecauier model also suipp. o a diagnostic, non-real-time syntactic analysis of
both nor represenmnons aid universal rersnain.A diagnostic indicator is reindthat supports
amre detection for both user representations and universal represepntations of a message. Figure 3 shows a
black box diagram of the tyecser modeL.

SAN SIM WAiM NPMr S49-7R-12 dud 'A Maid S*his far *A C'! Amp Tmndihm mi Vdm is

'A mW ,NPWWInmh. uS = WAOMsdif MPGOWu d mbh d a ma mining. h ul do ORMd unm wi
Pumau -ioaim and AG" pmdd wbu iiha.npb The uuv=n.Amu d anm nem vb a fig 2 a

152

Unire 3:Tpea oemBakBxDaa
Typecaster~~itena Moe olto BidngBok

1. D~~~screte 3 Typecaster Modre -Aa e el lackes Diarvam h onaino i

T ype mater Model Solution Buisedin Beocksie noteAaliiyfrteb te
Mwpornt of e pe model solution. node -- ok l tcmoet mncsayt

2. Disovee Typeast Templates - Ada coding femnpLuze do we te building blocks of the
* typecaster model solution. The. template proide tde capuily w pe 6om - ypecastng on

Ada discet types. Instances o(theme tmplates are layared upon the dbwcwt typecaster
geercs Te ies also provide a test puoathue tha does exbms e sting. bused on

dampng of the Ada discet type, and kwacive tsig
3. Composite Typecuter Templates -Ada coding temuplates dont ms also building blocks of

dth ypeaer model solutin The cemuplasprovide diespability to, peror typecastang on
Ada composite types. Imsane of the = loaed upon instences of both discree
cypecmw templates and odher composite typecat inmplates The templates also provide a

M~ paicedue ta does camned tetig. bused on ams cases supplied when due template is
insnm ted.

Typecaster Model Solution Building Plan
The following um die in kvolved in applying doe zypcmer model solustion In a set of minsgu that
need to be uwIslased. ad validated.

1. Comple Foundati. UWion -The utilitis that form the fomnddo of the typeu model
woion must be compled. These are the components in the Discret Typecaue Generi

SA onoas is a go caomg -n hownim "ackage spedfiamd. body mid we Iss lb. som puu Wo d
auk m *mA %f piautim. Mbn wpin is iuamnAl b y j1 momn w ph.w of th pbo.wIdms vimadir

153

2. Analyze Mesage - Define the internal representation descrition (Ada type) based on the
information provided in the descripton of the external representatior. An Ada type for each
field must be defined.

3. Instantiate Typecister Model Solution - Use dhe temiplates provided by die typecaster
model soluao to create an instance of the model solution based on the internal represezian
that results krm die messge analysis performed in the previous step.

a. Identtify and Build the Discrete Typecasters - The discrete typecasters needed to
trnslate ad validate the discrete elements of a message are identified based on die
Step 2. Cekto see if any instances of themn already exist; some may have beeni
cimmed for othe menages. Generate dhe dicrete typecasiers diat don',t, exist using die

qrrtediscrete typecaste templates. Run the generated test routines to check the
dacew astem

b. Identify and Build Composite Typecaster - The composite typecasters needed to
group discrete and composite elements of the message are identified based on Step 2.
Check to see if any of dhim already exist; some may have been created for other

messges. Generate die composite typecasters that don't exist using die appropriate
copstypecaster templates Run the generated ten routnes to check the

typeastes.
c. Build the Meage Typecuter - The messge typecaster is generated using die

appopratecomposite templae, usually the racor ni zypecaster template. Rum die
gnrten routine to check die instance of the typecst model solution (or die

The user of the model solution need not be concernedi with die generics iless the code performance, (sizing
or timing) is not adeqit to meet his requirements. The user need only be concerned with the templates
aid instantiating them as necessary to obtain die MTV capabiLities required by die system under

Typecaster Softwre Architecture
Figure 4 shows tie general software arciecture that resila when die typecatr model solution is applied.
The softwar atchitectise is shown as Ada packages and the dependencies among them.

The typecasser portion of the software architecture is based upon dhe sucure of the Ada type. When the
ypcsamodel solution as nstaniated for a partcula message, the resulting urchiactial components are

ins of the discrete typecasm templates and composite typecaster temiplates one for each type used to
describe the internal representatioa of the message. The typecaster uchitctte is therefor hierarchical in
natu The discet typecastess awe dependent upon the discrete typecame generics. The composite
typecasten are dependent upon both discre typecasier intances and composie typeaser inistances.

Condusions

lbw DSSA pmoject has developed a MTV model solution for a problem tdim ra in the C31 domain.
Usmait Sentry Ph=m H is using the WTV mnodel soluition. Mas ftuctiomllty povide by the MTV model
soilution meem their needs. ad bmsd on ewly timing and sizing amlyuis it A swsin diew perfoirmance

rduP mtes. MAe, they em abl ic genaur and =es the sofwar w translmt and validia a typical
m ig n less tha two hours

While developing tho WV model solution and participsting in design reviews at Granite Semtry. we
deel Ve a frocem for identifying models. This Va c an entails identifying problems dont recui on a

154

Fkwe 4: Typet O ouinSttaeAhtcx

0rjMo caspoesi oanOc dedid aa=t mpb=z eeoe n

FuueCn irt:TionesodlSluinSftaechzcx

Troject ese proetn domain Oce ode base, solu be olcd anhese oblms ue developend
mad into emodes. Also whieadeveluopintex gMoV o model solutions eveloe wayof documng

Fmed on o experu eed developdytcning prleminenung.nan and deuioigdi fve model soluon ofoeCr
domn We feel tat t dvelopmten and use our doaseci mrolels inthesfore engfineering 1-eld
widl baprovide h ig os. dna

ThuWo biee thee paods, domainm s ec otfi modlbss m be poplaed a the m swre developm

Venf doain eholdper nd on bdetf rcmng panled ianm A therdonad develo moe serifieds for

tI"m WeIm wasce tou"i alpia and zdo" bow a re crmgn pro edoomiwmkei ublem aproc bob idndyngtes

aomi ad WrmudM belevelopdadsrfe bafe .so i emn Iolm.Tehsne

* 155

net step is to generalize the model solutions using code template. The code templates help to insure that

each instantation of the model provides the functionality that is specified by the modeL The templates also

pmmote code and commem consistency. Thes cwarestics of the template should also promo reuse.

Third, models solutions need to be documented so that they are necognizable, usable, and adaptable. We
pmpose the following documentaion. outline:

1. Problem Description - (everyone) Desibes the problem the model solves.
2. Model Description - (designer) Provides a functional and interface description of the model.
3. Model Solutiom Overview - (designer and detae designer) Provides an overview of the

model solution. Liss the pa, how to apply them and xchitectual runificazios of the use
of the model solutio.

4. Model Solutiom Application Decription - (dtaUed d.egier and budder) Describes how to
use the model solution to solve your problem.

S. Model Solution Detailed Desoiptio - (buider, maiutainer and model adapter) describes 0
die daem8s of t model solution nplmtadon.

6. Model Solution Adaptation Description - (designer model adapter model adapter)
Desctibes how to adapt the model solutio if i doesn't quite solve yu problem

7. Open Isues - (everyone) imes of imtem to evaaey. These ichde functional limitations.
pefomuance limitations e.

Finally, the development p needs to be refined to encomge system to be designed by selecting the
p models from the model bases, verifying designs based upon model solutions and finally,

bidg the system using the model solutions used to verify d designs.

156

A STUDENT PROBLEM TO WRITE A GENERIC

UNIT FOR A REUSABLE COMPONENT

BY RUTH RUDOLPH

COMPUTER SCIENCES CORP.

MOORESTOWN, NJ

157

One of the assignments in an intermediate Ada programming class is to write a

package to implement an Abstract Data Type (ADT). The particular ADT that is 0

to be implemented is a set. Sets exist in Pascal as the "Set Data Type". Ada

has been crificized for not including the set data type in the language definition.

Therefore this problem provides an opportunity for the student to: 0

1. Show how easily the Ada language can be extended.

2. Create the reusable component - an ADT for sets.

3. Demonstrate the ease and degree of reusability for this generic unit. 0

PROBLEM

0
The student is given the following two part problem:

Part 1

A common application of sets is in the realm of numbers. We frequently refer to

the set of integers, the set of prime numbers, the set of natural numbers, and so

forth. S

The student is asked to write a program that computes the following for

numbers between 1 and 100 inclusive:

* The set of numbers divisible by 2, 3, or 5

The set of numbers divisible by 2 or 3, but not by 5

The set of numbers divisible by 3 and by 5

* The set of numbers not divisible by 3 0

158

To support the solution the student is provided with two library units:

1. The specification of the ADT for sets

2. A function to compute multiples, to generate sets of all numbers that

are multiples of some integer and are in the universe provided by the

set package.

The student must write the package body and write a driver to use the library

units, i.e. the set package and the function.

Part 2

After completing Part 1, the student is asked To rework the problem by making

the set package a generic and including a generic instantiation for the reusable

unit in the driver. The student discovers that placing the instantiation in the

driver denies access of the ADT package to the function. The function requires

two definitions to be in scope before it can be compiled. First the base type

which describes the set universe (the actual type which will be used for the

instantiation) must exist. Second, the insert procedure which is advertised in the

set package specification must exist.

There are at least four possible solutions:

1. Embed everything in the driver. The most obvious solution is to

declare the actual type and insntiate the generic in the driver
procedure. The function also must be embedded in that procedure.

A slight change has to be made in initializing the constant sets. They

can no longer be initialized in the declarative part because the Ada

rules require basic declarations to precede later declarations. Since

the function is no longer a library unit, but a later declaration in the

driver, the constant set object cannot use the function to obtain their

159

initial values. This may be unimportant but it is no less a

consequence of using the generic. 0

The student no doubt will select the above solution. But suppose this was a

more complex example and the embedded function was very useful as a library

unit. Is it possible to retain it as one?

2. Put the actual type, the instantiation and the function in a package.

Although this is a possible solution it does not seem to accomplish 6

very much other than to simplify the driver. Again, the problem is that

the function must be preceded by the actual type definition and the

instantiation. 0

3. Put the type and generic instantiation in a package and embed the

function in the driver. Similar to solution two, this doesn't offer any

real advantage over the first solution, but at this point in the 0

investigation one's curiosity has been aroused.

4. Put the type and generic instantiation in a library package and the 0

function in the library. If the goal was to maintain the function as a

separate library unit, this is the only workable solution. It does,

however, require an extra package which may become burdensome

in a large library. 0

0

160

Although this may appear to be a trivial exercise the lessons learned from this

endeavor are of great value:

1. Identifying a generic candidate may appear obvious but may present

problems that are not intuitively identifiable.

2. Implementing a program as a generic may be relatively easy but may

not take into consideration certain factors that are relevant.

0 3. Using the generic easily and without rewriting or changing the

organization of the original program may not be possible.

W

An Informal Extperiment in Reuse

Roger Van Scoy and Ciales Plinta
Software Engineering Institute

Carnegie Mellon University
F=*surgh, PA 15213

Introduction

Tis papeal focuses on t pratical impact of reusable; saftwues in system design. This paper is t resul
of work periortned in creating a software artia and. as such the isights presented are based solely on
that experience. TheV prpose of this paper is to use that experience to provide insight on ways to fcilitate
dhe use of software components.

This exercise in reuse resulted from work done by the Software Engineering Inmamut on the development0
of a prototype Real-Time Monitor (RTM) for Ads applications in support of the Ada Simulator Validation
Propun (ASVW). An RThI is, in its simplest form, a toontat read and write data (&~g., variables) in

exctecuiting application. it is essntially a primiive remo- debugge. Our task wa to build a tool
ftImiar to the ASVP -coauacm-o. 1 (from their fligt simulator experience) that exected in conjunction with
an Ads appikation. The concepts needed to build an RTM were not new, but interfacing one to an Ada
applicaton in a distribuited, environment. was. Since dhe RTM was built for usein conjunction with
real-time applications. it was desiged to execute in a Mr's spae time and minimally perturb the edetal
dining of the appicat ion.3

The R'7i4 task was a modest effort, as illustrted by Table 14. In addition to being a practical and useful
artifact (for the ASVP contractors). the large percentage of existng software components used in building
the protwtype make it an excellent, vehicle for A'sdisusn some of dhe issues related to using software
components. We stby distinguishing between the two 'gdes ofreuse:

1. Design re The rm of concepts or software components providing Functionality that
satisfies design element specifications. The Vinuua Terminal. Command Line Interpreter,
aid Forms Management subsystems fail into this category.

2. Jmpeintio. re Th r w en of software component providing fuctionality that aids
in implinenting a portion of a design element specification. Thw Binary Tree or L inked Lisu
est duatap fall int fti category.

Th1is pape will focus on some of the practical isaum related to design reuse.0

'I* is W- - by dom UA S. d Dsdemm MW vin. wd WmbM OWWW.i in dd Pqe M so&* fab. of
as anwo d lthdi M be -OTO a 0p~ 1 fid -dbi d~wamn or hoplW4d of Camw~ Mills.

nivuiy.ftb US. Air§WvwdwDquwm 1 ddme rab U.S Ommmo

2ASWvu w a~ m d I I- emn nuon by. o p omnef for Thiag Sym-. at Wig Pm-ns. Air
Yam Samr 3... - mE for a -d md ~i smonw af im o gk & wahm in Ada aug sond h we

-gm. adiguL 7b. am wa awami fttweoo vwb@m objad,. o looum w dopen Bik
dmha is A&.

40Suns fed fo w dw fa dJ awhs mdb.. =mW

162

Lines Tytpe of Code
1.643 Command Line Intepresr subsysten
2.421 Vimual Terminal subsystem
2.291 Fam Mmmnaem subsystemn
1593 Abstac Data Types (Buay Tree, Linked List, etc.)
7.948 Toad mused Lines
1,054 New code
9.002 Toal lines

Table 1: Ada Statement Count for RTM

Reuse in Design

Looking back on our design work. w feel that knowledge ar musable software components that implement
well undeuitod, high-level c -ncepin should be used during the design p uces. To n=lir* this in puatim
however. places a number burdens on the designer.

First, the raquieznents of the sysom mu be swed abstactly enugh to alow design tnx to occu. It is
* easy for implemetaon biases to hmadvamenly reep into d requiremems or design. resulting in an

over-specifled system. Systems must be specified absmuwy md concisely. The dlutncou is that a
specificauion mus indicate what is w be doe. rather than how it is to be done.

For example, one comonent in our top-level design was a command line interpet. Figure I illutates
some differences between an absum pecification and an over-speciflcation of a command line inteprmer

sy-edicau PutAlevu Sysilaimi .
1. WhMknews acmnmm a aing(:0)
2. Wha It pvvdm fnd I,&MaW, misp, ,wlw ft, m h
3. Whit it dor pin ofommumad Ibs LAZZI pmu

* 4. Wha& mmmr u d -zC ot adabh .miy ws dynmaio m y alloatmi
5. What could hqpyum amo Ian C m melee mmmd _.w . Wolm

Figure 1: Command Line Irp ow SpecifIcadon

* While the ove specification is uss/l if om in building a commnmd Ue e arpw, it has conmainsd the
design element to the point when only a band-acrft compoent will met d scficadan TMe almact
specificatim on the omr had is gnd Mough to allow ma pny PON " mmod 11M inspw to
mm the speclficaan T"u. desigig with the hum to mum componenin f dm d pw wo inuMlhlly
Conside do rundiflmanat each mqubmuent or dedpl elam. conam on whot (dsip) rbe

* Udn how (I-mation).

Second. n- implies a con tbxM on do put of the deignw. One a st of poundal componens
has been identified, one must cheom the "be one. Ideally, a pefm mach Is deaud-one whi t
componen meet the requiremnts md In compatible with de design. This mmly Iapen posing two
problems:

163

1. What criteria does one employ to measne potential components for closeness of fit?

2. Based on a close fit and a decision to use a particular component, what is involved to fit the
component into the system?

a. Does one alter the requirnemts and/or design to fit the new component into the
syseum?

b. Or does one modify the componem to fit the requirements and/or design?

Clearly. the lust step in access the suitability of a component is a 'technical best It" analysis. The designer
mu evaluate the pown. 31 componemns with respect to the requiraments and the design. This analysis
involves creating a set of prioritized design criu that must be uinsfied by any acceptable component and
grading each potential component according to these criaia.

Assuming that one or more components meet the 'technical best fi' criteria. the decision to actually use the
component requires a 'management best fit" analysi. The criteria we used in performing the 'management

best fit' analysis wem

Requrements Must the requirements change to accommodate the component? If so, what are
the system ramirations and the cost of the change?

Design Must the design change to accommodate the component? If so, what is cost of
the chap and how does it impact on work in pmgres other components, and
the desge documentation?

Component Must the component itself be modie If so. how much will it cost t modify
the component? A critial facr here is, whether the authors of the component
will make d needed component modificaions. If not, then them is a need to
analyze e documenton uaid implemenuion to deterneu the effort mquied
by the new engineem w pick up the component and modify it.

Schedule How does the decision to rem or not to ruse affect the overall project S
schedule?

For insmoce, ae difficult issue we faced was extendint the ftmctionalty of the Fams Management
subsystem into an am for which it wm't expicidy designed. We opted to modify the component rather
than the design, as described below.

The For Mamugement subsystem had for pars to it:

1. A part that builds frm templates,

2.A part thallows the e to fl in a form,

3. A pwt that displays filled-in forms and
4. A part that allows an applicaion program to exnact date hum the form.

These prots were implemented to operm as indmpadent propmns in a non-real-time ewuonment. Our
task w in t tpm dtm into a systm dt allowed fomm to be defined inteactively md fled in
dymmmicly in real-ime. The tok of iteratng tie pout wu uau-trivia md could not be done by
looking at the vilable doumeadm md code. Rather. t 1u1d that we pxme do subsystem and
sudy the jmoblena euimmnrnoly bokm deciding to proceed with t comlpomeL. In doe nd. di Forms
Magmat subsysem w succenfully maeded. But at what coo In dis cam t avinp wen
sub tntia since this rprmented about 25% of the totl ode a system. Bt. bad the in"t effort
failed, the ame spent oan t mini-prootyping effort would have been wased and the nded component

n by hand.

0
164

Claly. we don't feel it is a simple matter to pick out a component and slap it in place. Neither the cost
nor the risk of reuse ae negligible. The decision to use an existing component or build a new one must be
carefully evaluahe The cost advantages of adapting an existing component ame potentially trememdoug
likewise the cost of failure becomes potentially exobitn. Again. the burden hem is on fte designer to
fomaulate and apply the cceptance criteria for each compoenL

This bringas to the enacal components demselves. All te components we used were obtained from the
Ads Software Repository via a manual search process (an automated search mecanism would have been
an enoamous help). We found a wide varation in component documeadaon. This leads us to suggest a
minimum set of information necessary for specifying componens. Two levels of information are needed:

1. A high-levl description of the functionality provided by the component.

2. A detailed description of the component (along the lines of IEEE 1016 (2]).

The high-level description of the futaioality provided by the component must include the familiar
cnceps provided by the con i.ponuL 7e concepts embodied by a component must be well known and
thoroughly understood for a component to be recognized as reusable. This implies the need for
domain-spec componew librim where the beckgWund of poentisiam gives thm a common
vocabulary with the component implementos. This information will is needed to locae candidate
component

The detailed descipio of the component should include the following ianfation:
1. What it needs. Specifiaon of the information dit he component needs to perform its job

or change its state.

2. What it provides. Specificaion of the information that the component makes available after
perfoming its job or changn its state.

3. What it does (not to be confused with how it does it). Specification of the functionality
provided by the compmet a daription of in job. This should include a deaiption of the
concepto provided by (embodied in) the compose.:

4. Perxuabta documentation (especially in the rldtime world). This needs to include items
Wk: dms and memory needs, dymm veu static allocation shernme a matic gabage
collection vms manua p ubge coled, e. (See (1 for example).

. Radtiale-type documentation It is not Sufcient to simply explain how smuthing is done in
code; this can be gleaned d hu de code WelL What is needed is why a ped action is
puftxRmed or whY th component s implemened in a specific manner. This type of
information is of gret value, since it gives te usm a glimpe into the mind of the
component's designer.

6. Tes soft e dom the i muy ohard to cmponen ruse is the
adequy of thesting the ompomea has .ed , Without documet evidece of die
quadity of the componnt, this waik must be mpeued with every u of de compomaeL This
FI'a-- is made more diffilt b si thu sdov is om m illw. The inclu on of tu
uncleiis and expected rsulits Amu with dohP con -- is ccal.

T hi imim Is Msea to perfomiag the dmical and rmapn im bet 9k alyi diamMed above.
The bu en of documenting the campen e with the compoent dehlgm and implementars.

S7g am Whf tmgi *0 C703) 60-147 or wyi Adk SM --s Rsqme . 3D13 - Do Pwaam. Waagm. DC

4

165

Conclusion
Clerly, reuse of software components can be important in building software systems, but it places
tequMIments OR both the component users and implemenrs. Them raqUrmn indicate a need for
additional work in the several

° Requi'CMents geneauon: Approaches to requirement and design Ve ca that allow for
and incorporald reuse need to be developed and praciced.

" Analysis techniques: Techniques and methods for deciding when a component is acceptable or
when a component must be built.

" Compnene libraries: There is a need for domain-specific libraries containing quality. tested
comupOeneMs. Also, any hIbAy of significant si needs a taxonomy and a datbse, to aid the
potential user in locating components of interest.

" Documentation: An information content standard needs to be developed and required of all
components in a library.

Acknowledgement
Our thanks to th oher Nssemiumuon of Ada Software Engerig Technology (DASET) Project team
member, Michael Rnssnan, Riclad D'Ippolito, Kenneth Lee, and Tinothy Coddington, who conmbuted
to the Project on which this paper is baned.

References

(I] Booch. Grady.
Software Components with AdA.
The BenjainizwCuminp Publishing Company, Inc.t Menlo Park, CA. 1987.

(2] IfFE Recommendd Praace for So~w.r Design Dcriptions.
The Iin o of Elecuical and Electronis Engins, Inc. 1987.
Std 1016-1987.

(31 Van Scoy, R.
Protorype ReaI-The Monior: Eecutve Summary.
Technical Report CMU/SEI-TR-87-35, Softwam Engineering Instiut, November, 1987.

166

POSMTON PAPM

REUSE IN PRACTICE WORKSHOP

Locating Resources For Reuse-Based Development1

Sholam (Saford Cohen
Softr Engieemn Iznmm

Camegi Mellon Univeruity
Plnabugb PA 15213

NET: sgc@seiaouedu

0Abstract software. Then methods are directed at the detailed

T aarix esorce i a ollcton f rusblesofwm desli and coding stages of software developmeaL
Io gr inigm o aaco ment an reia Howver for applicatins mi the areas of xwomcs or

zu~~~~mmmw &Wzno cotfl ftnaemr adecisioan~ prtes for
metbods. MM MOWaNe of the collection WMl need determining t aproritees of a reusable resource,

* dlerern operadnm and modes of access from an eve code camnpooerns, should be concurren with the
awplico developer using the collection. Users of the software requirremns and catty prototyping phases.
collection will warnt acc to it at dfzern phases of the WzthwW kmwieg of the reusable resources,
hiecycle. Finaly, users will have exqetis in different requieents speciicauion can restrict the use of specific
application dotosi, but may dea're access to the same resoures. In fac, certalwy ey stems decisions, such as

0 infounaloIL the choice of specific hardware or algorithms. may
Thnis paper briefly examioes metbods for managing totally preclude the use of a reusable reoce during the

and locatin reusable rsurces. These methods inclhd later stages of software developmeat Software
andh &WbU Ifcet-basd infOnrIiti rerevl seificao decisons made in light of existing software

The paper also innroduces a new method to support - re& s, haviware design decisions wre currently
searh and reweval that captures infomaton specafi to made in light of existng hardware components, will

anenduser application (both reqirzements and design) result in an increase in software reuse.
and matches that inftanadoi to resources in the library. Qmen macbauismsfo talgn andM retrieving
Isnepraton of these approaches is essntxial for cod ampo nn aimed at sotware engineers, at a
successful res-bond software development. pon in the developmntm when systems design and

soiwam merems wre complete. The mechanisms

L Inrodctin asu- that the 1-e has fim software requirements. and

Succesaful applicatiou of reusabl software assm prnlby design. and is searching for code components to
tint a user ca find and ane software from a library of be used in ;'IZUEU Fw~ou And more, most cdsting
reusable resouces. A, catalog m mntac scbe to Ieque* n for Ie- e ate built upon established

* control the resources arnd dama about them and an computer soce madels. eg., abstract data types. tools.
inoto mowda scbenne to obin the resources andi etc. Them auptins are un appropiat for the real-

data. for the u am emuaL. Current teclunques for tim embedded syinms applications enine who must
implementing tbus schemes center men d iionl main deanms w soch areas as choice of hardware
dua hem models an I M liray siiwou mebods. do serh n rdiguxq&a XI1UIU
These tchdquft M appmupguat for Code compFoin M et s 11 applicareqiore

0 jatmided for a imp of applictous, whera decisions oninp for hdg and rurieving to only code
abu oeta s um otaedsg n -, n ton but also otber reusable mboues bined on

;I . ri I the application, not on t c ,paPon thuaelves. and
These tradina data base wd dassification methods mutepo w Mae inl ea. in o dipmnt.

limit the utility of a libuary of domtain-specific rembe hi paper will describe methods for retrieving reusable

tSponsored by the U. S. Department of Defense

167

2

software tha also a~lres the needs of appLication In addition. the amne category of uesource may cm
egi 0 1s packaged in naroas ways. For exaniple, source code

The nam section of tins paper sumnanze the may come in single fles (Booea WIZARD, Ada
problems in managing a collecion of reusable resources. Software Repository), multiple files (CAMP), or
The setin duscribes why poper management of multiple directories (GRACE Components). The
resousces mum account for diffeent sources. various mimager of the collection must 4--cid whethr to
daums and non-uniformity in packaging of reusable attempt uniformity in storage, leading wo configuration
softw=Le The n= two sections of ft paper con=i control difficulies when updates appear. or maintainng
ad sbow examples of eicisting methoids of locating t original spnpcml, making use of the. coLlection

resources in a library. Examples of tbr searchi dffwcuL
tecliniques will deonstate tbew utility in a variety of Thea cootemiporatry library, or resource cener, bas
settigs. The cooclucling section will alsob thhaia e dealk with any of de problems. Collection budlding,

iinon of inlegramag these methods for for axaniple, takes into acount de variety of sources for
mmageent nd rerie maeriala: taditional publishers, goveromemt

pblications, technical eMou fiuin industry or

2. Resabl Resurceacadea. Library science has also cosidered the

2. RembeRuc anagement of a Mu.etono esbe wppolm for electronic media, with research in

Th eourues pofe a large sm colc nd otof insanti re v looin at CD-ROM and yperte=t

softwar naeen fte resources poses atm soaeake iontrol 71w vulectio and stompg problems, whil sigifcant.

acoblem anagol of the restatouce mutoa inital toref are =o the man topic of tds papea, owever.

reource eand o sot cufoesirn t infomaltiore due Managemenit of t cofection must also include control
iacs ad t sppot dmaes n :e ifomaton ue of the metbod to serc for and retrive infixrmanion

Wo maintemcem This type of collection managemen abu th resources. 7be remainde of ibis paper
dffer bumt the tradiional view associated with library descrih techniques for supporting this second funiction.
support, due to the dynamic nanire: of a reusableg
software collection and to the fact that the collection is
primarily electronic. However, undying contemporary 3. Attribute-based Retrieval
trads in Unbrry science can offer sup r to the The inmiem of reusable software resources
min of reusable software. requit=s the development of qipspropie attributes ad

Softwar collection will be built from reusable ehosfor awoing and removing thmn. In muadtional
tuouces f a variey of sources. The collection may cataloguing. refered to as descriptive cataloguig in
came ely har a sing& project or set of islatnd liWavy scince the resources of a collection are
projewt wit a single orgnzton or the souc may described tdyough their attributes. For reusable
be a the copmr level, , , fh*g pnwject domains. The resources, n ttribut migh be tdn came of a par, the
Collection may also iNdude resourcs from external fractioa of a sarsystem, or other uinmtion about the
souces PIte govn or commercial. resource. For nearing a catalog of reusable resources.0

ThMow lxte of mmgztng the collection incease one specifies a spedii attribute or a combination of
when doe sourum s mu ;orrat wide or mauaL amibutu ad valus for those atrbutes. The searcher
Put P.om the vatiety of clam of riuwb" softwue obtains ruoru dt~ hae those values: and is provided

iacs(code coupom, dom i, bimi with knbnation ablout the resurces. This descriptive
Or peaofumm Nta softa code Seat. infomdo is ado in ths form of attributes of the

incim~srequirements, etc.) leads to a stoap and usaucm
cotr l ihlam Resources may fall ito, differen Sucowhl an o(dun retrieval medbianim requires a

6 or each class of 1wo-c-s, amd as sourc undmUang Of sevra key n
code files (componr), gaphics (d mton ad I Umaigo h uiue
performance tests), or =a (d7nbtin.Te stomag 2. Mwrm fvle pdi tiu

I ~ ~ ~ ~ ~ ~ .h Itng of vaue aus sacounc attributeoytedte ac ha
a single resource may have elements bum multiple 3. Mw strucure of the collection of resources
calPois. 4. Tim ability to combine or add attributes

168

3

5. The tulaliousbip o(the attlbutes to the foilawiag &COW.r
iuqumwmnt for an 4aplcatoui

1. Swbrsmm
This level of mundiig suggesu that the use zs 2. Role

* M~bghly faiiar with the coIecdaofo' campama be is 3. Pwpe
desln with Phsonly, dos method of saucing for 4.UP
umble iuiomcu is aimed at a saftwore mnnher. withS.otu

kowledge about the spedk isusaL The method as
m r o psmnis at deda urms The in-go o(the For eah campamunt'i t collecioman will be

* collectio Will also 'us this appuusch. ow set of ws for Caw &=L Far the COIZpOOem
Capwwpsswvekry the ten'5 am:

4. Semantic-Based Retrieval Face TWO
Snmf inhnnrmion about a -Pom-1ce ab whe that Subsye. Navigafln

ing- c m do in a ve p omex. The umar of thi Role OPemar
nuch tebqu does =na ot am uulinmnding of pupn Wandwea-rnuth
the cotem of the collection because the seach method --mNoiales & nabveot
is bed, o whet the tulamna does in so applicafltm sine & comof Wwae angle

dh m an ho ow it ftu ju a collection of othe Output Ti meoct

* The method is usefd a ay stag of developmemS con
Because the seath ns not built wonad the resources Mw method has th advootage of being mey flexible
thezouulves but aaned what they =n do., am may be a and emy to g=sL If scw -com;a9 - Ccome =0t a
sytmg nn-ll with the spec of doe cofleodou, == my be added to tis facets, if
softws un a lity captured by th zesaucesoad weemgy, to hgy dantIfy them. If a cunpiemly new

* bulirwith se.&wuu tennimios med to describe coilci ofienbow, is added. than a nw 3e of facets
the amsibmses of the mome. is munspeciftis1y for that collecton. The

The buued i~prac is a pl Of MUmeVIDg clmIfli wl then be din with the new facets and
Inctulm though Udoradon about W they do. A t~tm
bugt is defined as a clan of tte hen enz am Mae method is mown effctve fo a libmy of closely

* way of loodg at a mo'mme. A cam ae 6sed misted. law paiuiiy. dogie &iuitie mmsoeLs Fr-o
cicuam a(a collection of muame maom do typ of ofljs. th buad method punvides
cood= at everal difern fte each with inmr wn a zuIut disadmindon betwee 4alhlla compom. If
Of tem a caleisam is divuifid or mon complex software is

Mw SE Appfication of Renamle Softwu WnUodinud the hmesd method bensliess effectiw.
SCompm Ptoject developed a besed apposch to Far dlvilhd collecdom, additional acets are

dlasifing mumble zmwom.c 7b@ project used the zuquhs&d Complex satw= I inuu in uus w=g in
Au Ub-uy Syrn. (ALS) developed by GTE Labs to sub but for coppile daflcsii making dto=mu
UOPPW I amd clanimom sod modeval The dian=k to us. Tbm boM weigh apiut thi method
project eablished a mus colhectm catig a(ft~ for =s at dhe uquumm insw when ivuity Of
CAMP companm, th GRACE Campou b fto u Aisnt ad top livd m M dw camgm m
FMI and the Booch VIA3D compom 7ime. i@Nfte t gppfimoat MULm
inmpom hae bees uzand im tdee. calihodon

1. Mw" apetedom 5 Apicto m d Retrival
2. Kihemfibe md nfmulae opnsiom 7%qpluir~i~ method us lOnmmian about

3. Abeiucr ~ ~compbome Symns to 4idhf qpropuims imsm for

For echt colicrion thems is a sepued set oftcest and mum GOa qiplimce. lbs method wee developed by
tans, spedfic to the compau s at monom~a Far the Cmoino Ada NModle ch (CANQ) pnWa'
9xampKe to the mskl apwmans coibeaorn. them: s for the pent kkdemflinsuindem of the A&a NMIdi

169

4

Part Enpounug Expert (AWPU system Most of the For eac wa identified the systez apProach can
.fahz600 needed to impleme d& =W =etho can spin query dwe telfining Ws requnements with

bua= data cqWzm4 dinig the dams in ansly= ih led to tugaid to ft imuc 1, re user is ot asked to maim
thu i , - wmrnio of the zeuabil mmm *Cwulvus sped& iftc e. duuip deciion ody to dwwed=ze
Trs xVromh Prueeds mri prlaW wit imu bas zuq'mmat. The sym .1 agan m ==zwow=e
develapawa. 1he thin foijusg the d~veopmeot a Man dhas uqintowius.
in the aunbute and faceted -,pproacies.

7heM are two Maeulds for perfOnnig apphimioD
band .lelaL A rym ; F 9 e~ faw n (a S. Sdv rcie Approach

apiainhaes, or caaite a ete loft -0WU =bietum qPom4 provides t us
rsncs~~ ba on, ft cis e of at , wit a gpphc deicion of I~s - (or a elms of
AMp mlIcain lbs sacod nethod. wak how a mec sp iaoUsb Tin =Oda afows t uma to awo th

1 ' M cc atModel o aft -- aw fat tu domain and Amami , I- wm to tin specific u ih u of the
amcbes resouces to 60 velm Of lbal ual inu010 a syte unl deaWcuent. fM astmion invidies
inndouzd fat a RId&sPuctio. aniecuom of aulaysm and fitction to support specific

Bftinu te aplicadaisued. appro fioses onm a sotw rqiWmUI
bigb-lead view of the symn wdw developmwt t T procesing step must asse each taoig step
techiqum as appmupnam for the system deuigaes wen~ and link tha mwsoutzad to t avaabe reusable
ad othe ae desigme and an be =ed essly in te =UsW As the mlat os"9gme LbO geonc
.J- i~d o idsjli zua erhm ie he wil evesmaly active at specifc
zesuces. The nex two subsectai desalbe thes two wbc may be A&a comapooent or other
approaches in w~r of t infonmao. waer man ~ n OIUU
prvide. t aeu t egy, and ft daam d to t rw abeu method provides the fowing

MPERAE Gnrc archiainurs of typial
S L appicac Appoac AP buld.'iu ahuto fo

system lwaL. Under thu ; F userd prowides c
ifadmabout ft symu d ndeveYlopimem rm IOWO aa.,.i
may ie ossni suquiruiens, cc specifica aboi ___t ___ aciir towial

suboy---. The . s oma wiU Judge ftIMal
I i- afo casslo"and COsder shrad PRODUCT Andbuu ot avaal" eso

tosu omMvn alese " in supporn t e 60g~ Cosom4niu hi.
ones requrmo lbs aprI wig nu= to t ttegg
the catalog aubusa of 6@ rsums ta suport bi The ow Moo subsedoia soun ft appliaxim of
zu.uIn.l If the .uuii . CRE be metiuuetly thus two Mproace 10 do selg~oo of CAMP

hut the 00owdom, th now wil be offud saggesdous 406 Ift

apicatka In addim doapqpmc ase wpom L&onMme ffmw Eprt
inm fta vows It m TI.I-IM AWU symte oewe a wide zugs offtu g y mtapfi saeki o a afid s odhresousaw itg sop p ost s oft a n u iev a L

INTIERPAa Queries ur ata sym suuI *10 en ute@-=pn a.ad
PRO=S Vailduus mq..umem fo a asdisn-) 0 ym m I- I - ok

Causidem avlalei rnaoes and .r.. w I auppam -seselmcoes

Ofnu * io pbae -syn be*==mmt

PRODUCT Atoibete a(saiulabi mgaus ont s -1 1u lt
-gpw~ym .- ler pp .

170

S

clcks~ Te uset begizz by identifying several of the
0catalog dau bans- controls part auntwies subsysem of his specific application hom the generic
anl I I - e on attibutes misl model. At suiccessive levels of the arcbiter

* The systm appruach gm A~vpE uulm these the usit can select mo0m speific resources. The output
fea im i ~ wuti theNiMmseegr to the we as. amo again. the attzibutes of the reusable
da about his quern duougl menu. ANUIM uses tsoftwase; an,1P4 in thm catalog. 7be Nsa may) (lmy these
dama in peforning consistency checks togh the = be proeeds through the graphi or may accumulaxe
biowledg and rules base and in selecting ap ose them to the end.

* CAMW software fice the catalog data base to implement
timhms The&7e pars list is thea pond to a catalog 6. suMnary
fuon swuing attibutes of specific resurces. Mngm tofa collection of muinable software

7beflloing 1,1,exis te mnow n wicb resources will pose CaIlmeges to those wishing to build
AMPSFE implemenat; the 5)'atm appfoacb. a large rme Plibrary. Tim problems of building tim

* fnTIFACE Mmau query use about system collection. describing it, and classifying it, must account
I IqMi remem for the variety of resources that me avai1-lal for munse

PROCMS Knowledge base supports cornsieration and tbe iffl ng nqurements of users of the collection.
of possible altratves The methods formanaging zim collectiom both in swnrng
Rule bus to validat for consistency and contmolling infoasion, must, therefore be flexible

*PRoDucr Parm list passed to catalog fution to and aseble. They mut also cooulde not only
retreve 2ttibutes of avoilable resoues maaing the resources, but also supporting the goals of
supporting am requireruws reuse-baued software developmnt.

The AMPEE tool rsn a pauts list that leads to a Metod fo muevn inanto bu h
conamuzng dialogue with the usor to refine his selection oltitmutasadrstbesmegl.Ues

* of compomnrs. wil bave skils fins diffeem domais and will aces
tin library at various points in the development life-
cycle. Tbose unfamlia wi the stucture of the

SA4 AMPEE Missile Model Wulkthoog colecton must adl be given acce to the resouss. and
The Missile Model ;IprIachIallows a user to build a thos who have knowledge of the contents of the

simplified vasiom of his application fins a stanard Collectiona must be provided with powerful tools to
in.c1.InecP - It provitles a graph of asciaetus for the capitalin an thai ixperuse. These goals -an be

application a that showing usable software in accomplbd by Frovdin metds that atdnress both
inpoIn of the impementaticn of bigh level fetms whet t sesomose is as well as what the resource does.

Nodes on the graph will be the subssms and furntict Integraton of retrievalmehd to support the attribute
aupportled by spedii CAWP software The ume semni and applimation-bmnd approach.s will provide

frvust grapb, selecting nodes to customiz the this mreqed level of support for usezz of a reusable
ad Moe POf Wis Own application. The AhMM systemn software collection.
acesthe identficaton of a node by supplying the nam

level oftbe Iuhi m Pmex At the lowiest level. the nodes
on the grepb mu aividea1 resomucs of zuaabe

* ~~Souwue. The6 fnmu support by dis method ae:

INTEFACE Grapbacs depic a poeic archeecue
User waftft deog th .m.lI - I- Me

PROCIESS Knowledge base provde dat at each
0 level

Lob custom =CUNX=~u to available
CAMP sofuwu

PRODUCr Displays auribmams of available uesources

171

Sciecapitflkmt1C PVtl &ao

0

MANAGnIG LARGE REPOSITORIES FOR REUSE

April 10, 1989

Prepared by:

Beverly J. Kitaoka

Science Applications International Corporation
Tnnovative Technology Group

Science Technology & Software Operation
Ada Software Division

311 Park Place Boulevard, Suite 360
Clearwater, FL 34619

172

Science Applications International Corporation (SAIC) is in the process of
building and operating three significant Ada repositories for reuse:
Software Technology for Adaptable Reliable Systems (STARS), Air Force
Logistics Command (AFLC), and SAIC Corporate. While each repository has
distinctive needs, tha majority of the needs are comon. The STARS reposi-
tory serves as a testbed for repository and reuse technology. Distinctive
needs include a means for sharing program-related information such as
meeting minutes, presentations, Contract Data Requirement Lists (CDRLs),
and peer reviews. The AFLC Ada software repository has been established to
provide a means of sharing information among the software development and
maintenance personnel at the Air Logistics Commands. With the wide variety
of domain-specific software developed at SAIC, the company has decided to
institute a reuse program to enhance the quality of the domain software and
encourage cross-domain reuse.

The primary source for repository technology has been, and will continue to
be, derived from the STARS program. This paper will describe the
experiences and challenges of creating and operating useful repositories
with this technology.

The major repository issues have been divided into four categories: content
acquisition/update, technical information services, facilities, and opera-
tional support. Content acquisition/update includes classification,
evaluation, and cataloging; technical information services include supply,
reuse, logistics, and forums; facilities issues include platform, equip-
ment, and communications; and operational support issues include access,
usage monitoring, tool installation/customization, machine operation, and
configuration management.

Content Acauisition/Uodate

We decided to establish these repositories by collecting all the Ada
software we could get our hands on. While the objective is to provide a
repository of certifiably reliable components, we determined that first we
would need to learn how to make certifiable components (through creation or
adaptation). We felt that the process of evaluating a large collection of
software would teach us a lot about the characteristics of software, the
classification of software, and the adaptation of software for reuse. This
initial repository state has been designated a Odepository (junkyard)u by
the IRK Houston STARS team. The Houston team has defined a spectrum of

0 repository classes which includes: depository, filtered, organized,
managed, and certified. If one considers a repository to be a collection of
software work products and their supporting information, it is possible to
consider a repository of repositories in which collections can be in the
various stages mentioned above.

With this in mind, we created depositories of the following software
collections for the STARS, AFLC, and SAIC repositories: ALS ASR/SITEL20,
CAMP, IDA Ada/DIANA Front End, IDA Ada/SQL Binding, POSC/WIS, SDNE, and
UWITREP. In addition to these collections, the STARS repository contains
STARS Foundation and STARS Prime software, the SAIC repository contains SAIC
proprietary software, and the AFLC repository will contain software specific

173

to the Air Force. We are in the process of obtaining AFATDS, U.S. Army/
CECOM, McDonnell Douglas and Ad& SAGE, U.S. Marine Corps and determining
how to make the STARS software available to organizations not affiliated
with the STARS program. 0

The initial IBM STARS repository used the VAX/VMS directory structure to
organize the code by program source, using subdirectories that paralleled
those used by the distributing agency. Simple directory keyword and source
text searching capabilities were implemented using VHS utilities. This
approach provided minimal organization to the repository while the contents
were analyzed for key characteristics and reuse potential.

As our next step in organizing the repository contents, we chose a hier-
archical, relational data model implemented on Oracle, a widely used
commercial Database Management System. Oracle runs on several platforms,
including the PC, which will be useful in implementing the shadow reposi- S
tories and project libraries. We chose the hierarchical approach because we
felt it would be easy to implement. Our next goal is to implement a faceted
data model. The faceted approach offers higher extensibility, flexibility,
precision, and succinctness over the hierarchical model. Since this
approach has been successfully implemented on small, domain-specific
libraries, we have decided to enlist the efforts of experienced individuals 5
to assist with the transition of a large collection of diverse software from
a hierarchical to faceted model. We will retain the source directory and
hierarchical approaches as alternatives to the faceted model. Implementa-
tion of the hierarchical model will provide comparison data for the faceted
model on this type of repository.

To morganize" this large collection of software, we have constructed
guidelines for software engineers to evaluate the contents of the reposi-
tory. These guidelines include a copy of the baseline data model;
descriptions/explanations of the database tables and potentially obscure
items; a master template (electronic) for entering the characteristics of
the product under evaluation into the database; a description of reuse 0
categories; user manuals for tools which provide further information about
the product, such as lines of code; reuse definitions and guidelines; sample
product reviews; type lists; and ownership categories. The goal of the
evaluation effort is to learn as much about a given product as possible for
classification and reuse potential. This information will be useful in
transitioning from a hierarchical to faceted data model and providing S
information for repository users. We intend to use these guidelines to
process new repository acquisitions and updates.

The evaluations will help us *filter* the repository-by providing informa-
tion on redmdancy, outdated versions. incomplete or nonworking software,
and form and content consistency. 0

We have created a tool which will generate a catalog entry for each product
in the database using the data entered via the template and generated by the
evaluation support tools. This catalog tool will allow us to generate an
up-to-date copy of the repository catalog whenever new products are
acquired. S

-2-

174

Part of the classification effort for the AFLC repository required domain
analysis for two selected domains: onboard flight programs and flight
simulation software. We determined that the classification scheme, or
taxonomy, was dependent on the domain analysis and, therefore, a product of
the domain analysis. This determination was reinforced by discussions with
Ruben Prieto-Diaz and literature searches. An incomplete domain analysis
hindered the process of locating potential reuse candidates for classifica-
tion under the domain, requiring further domain investigation and
reclassification of domain-specific components.

Objectives of the next STARS increment include guidelines for creating
*managed" and "certified' repositories. We will apply these guidelines to
the STARS repository as they become available.

Technical Information Services

Technical information services support the repository users. These services
may currently be invoked from screen menus and database queries. We are
exploring other interfaces such as Natural Language Interfaces, Hypertext,
and the use of Graphics as alternatives to the menu and structured command
approach.

The process of a user supplying a work product to the repository is similar
to the content acquisition/update process described above, only the supplier
will provide the classification and database information instead of the
repository personnel. Guidelines and templates for entering this data will
be supplied to the user. The repository personnel will then evaluate the
software and load the database. This process will be tested in the next
STARS increment as STARS work products are created.

In the first STARS increment, tools were selected from the repository to add
capabilities to the STARS software engineering environment under develop-
ment. Interface standards, OVirtual Interfaces," were created for the
environment. The objective was to remove the existing tool interfaces,
replace them with the Virtual Interfaces, replace any code with existing
reusable components where possible, and create new reusable components from
code contained in the tool. This turned out to be a more productive
exercise than we first realized. The reuse of the Virtual Interfaces and
components produced a large amount of working code in a small amount of
time. We faced performance problems in some areas by reusing components
which were too general for the application; we had to deal with components
which were not at the right level of abstraction, carrying unnecessary
baggage into the application; we had to deal with the necessity of varia-
tions for different application platforms; and we had to deal with some
reuse management problems.

Rouse management problems included the construction of ne code because the
software engineer was unaware of the existence of a particular reusable
component. This was primarily a problem with the initial directory
classification structure. The immediate fix for this problem was to
emphasize reuse in the design reviews - the problem was discovered during

-3-

175

the code reviews. Another problem discovered involved adaptive reuse of a
component. In modifying a component for use in a schedule-critical applica-
tion, the software engineers did not pay attention to making the adaptations
reusable and returning them to the repository as reusable component varia-
tions. The impact was discovered when the same changes were needed for
another application, and the component had to be extracted from its now
application- specific environment and modified again for general reuse. The
fix was to stress reusability as well as reuse.

Repository tools which we have created from salvaged repository software
include: browser, annotation editor, pretty printer, standards checker,
profiler, compile orderer, cocomo, SGML processor, catalog generator, and
evaluation generator.

'We are in the process of incorporating our reuse guidelines with our
software development and quality assurance standards and procedures.

Logistics, the process of getting the right product to the right place in
the proper form, will be part of the next STARS increment work.

To increase communications among repository users, forums have been created
using the VAX/VMS NOTES product. This capability allows users to enter
information on a given topic and solicit responses. It has proven useful in
locating solutions to problems raised by the STARS team members.

To provide a useful repository, the facilities must support the required
repository capabilities which include evaluating, certifying, and storing
the contents. The current IBM STARS repository contains 1.7 million lines
of Ada statements requiring 214 megabytes of memory. The total size of the
repository is 367 megabytes.

The platform selected for these repositories is a VAX 3600 running the VMS
operating system. This platform was selected for the SAIC and AFLC reposi-
tories primarily because the equipment was already in use by each organiza-
tion. It was selected for the STARS repository because of the wide usage of
the VAX platform among the STARS participants and the modular expansion of
resources available by clustering the VAX computers. The VAX/VMS platform
also provides sufficient Ada support so compilation can be part of the
evaluation process.

The significant number of software and hardware vendor offerings for the
VAX/VHS platform provides a basis for rapid-prototyping repository capa-
bilities. Commercial off-the-shelf products can be used on a trial or
purchase basis to determine the requirements for repository operation and
usage capabilities. These requirements can then be used for ake/buy
decisions based on current and future considerations. Future considerations
may impose performance requirements across distributed, heterogeneous
platforms, for example.

-4-

176

Equipment for the repository includes 32 megabytes of physical memory,
approximately 2.4 gigabytes of disk storage (four DEC RA82 drives), a
cartridge tape drive (DEC TK7O), and a multi-density tape drive (DEC TU81).
Of the four physical drives, one is allocated as the system disk, one is
allocated as user disk space, and the other two are bound as one logical
disk volume (ADA$REPOSITORY) where the repository contents reside. An
optical disk capability will soon be added to increase the variety of
physical media distribution. Access to the IBM STARS repository is pri-
marily via dial-up modems into the SAIC terminal server with automatic
connection to the repository VAX. There are currently eighteen telephone
lines organized in a rotary group. Sixteen of the eighteen lines are
connected to 2400-bps modems equipped with MNP Level 5 error correction and
compression. The last two lines are connected to 9600-bps modems equipped
with MNP Level 6 error correction and compression. . The nineteenth line
serves a dual purpose, as a trouble line and for modem testing, and is not
in the rotary group. A network bridge connecting the SAIC Clearwater Local
Area Network (LAN) and the IBM Gaithersburg LAN has been installed to
improve comunications between the two IB STARS teams. Efforts are being
made to obtain a dedicated ARPANet node.

Ultimate repository platforms will probably include distributed hetero-
geneous computers - allowing optimal performance for a given capability.
UNIX platforms, including the new IBM platforms supporting AIX and the BUN
computer, are being studied for this purpose.

Operational SuoDort

Operational support capabilities include providing user access, monitoring
usage, installing and customizing tools, operating the machines, and
performing configuration management.

At this time, only STARS affiliates can access the STARS repository, and
only SAIC employees can access the SAIC Corporate repository. We are
currently working on methods to resolve this access restriction. Access to
the AFLC repository is in the process of being established. Usage
monitoring will provide information on who uses the repository and how they
use it. This information will give us insight to problems with repository
support and assist in the definition of new requirements. The absence of
hits for database queries will provide demand information which will be used
to identify the need for specific reusable components.

Configuration Management guidelines have been developed using the VAX/VMS
CMS product. These guidelines will be improved in the next STARS increment.

SAIC will continue the work of enhancing these repositories while exploring
variations of the repository, such as shadow repositories and project

* libraries. The STARS program has been a valuable means for developing the
technology applied to these repositories.

-5-

5 177

POSMON PAPER
REUSE IN PRAC7ICE

Aerospace Distributed Software Library

Wiliam Novak

GE Resident Affiliate
Software Engineering Institute

Carnegie Mellon University
Pittshugh PA 15213

NET: wet4sei.mu.edu

L Background & Motivation Language (SQL) and ms under the VAX/VMS
operating syszem. The library units themselves
exist as VAX files that are distributed on various

LL Introduction nodes across the GE DECnet network, and the
Virtually every programmer maintains a system automaically retrieves the units selected

personal library of reusable code and uses it by the user with a background job at the end of the
regularly in developing new software. Often some ADSL session. This arrangement keeps the
of the most effective software developers are those amount of disk space required for storing the
who have at their disposal a large personal Library software at any particular node to a
collection of previously developed software that minimnn.
they can apply to new problems. The difficulty is
that no other programmer knows enough about the
contents of that personal library to be able to use it 13. Purpose
as well. As a result, time is wasted developing The purpose of the ADSL development is to
independently smething that could be done better cnUre a dismuted library of rcusabe softw e
and faster by working together. across all of GE Aerospace using this system to

catalogue and retrieve the library units. The
ADSL supports not only several different search

1.2. Task Description techniques, but an extensive Library Maintenance
In response to this situation GE Aerospace has application that allows all aspects of the system to

developed an automated system for the be mintained, so that the differet ADSL sites
classification, storage, search, and retrieval of may be managed independenly.
reusable softwam. The Aerospace Distributed The current conents of the ADSL have been
Software Library, or ADSL (formerly known as taken m many sources. but repr 1sen only the
RARS), cur ently provides automatic GE DECnet usi beginning of what the Library will
retieval of over one thousand modules written in contain. In 1987 Imndres of Ada components
Ada, FORTRAN, C, and other languages which we talen fim the pubtic domain SIMU"ME-20
have been catalogued from GE, public domiin. Ads Software Repository to establish am initial set
and commescial sources. The ADSL offers such of Libary uMits for tsrAg In 1988 two additional

atch techniques as taxonomy-based (using a reusable software libraries have been added: 1)
hierarchical dlassficaion structure), keyword, and the Booch emponens library, 500 different data
text seatch with various search constraints snucr pacaWs writtmn in Ada by Grady
available to limit satches based on different Booch, and 2) the Ada generic components library
properties of the software. developed at Corporate Research and

The ADSL has been implemented using the Developmnt in Schenectady. Software of any
INGRES relational database with Standard Query type may be catogued in the system- there are

178

Rem i. Practice 2

no restrictions on type. application. search constraint which is available allows for
implementation language, or even quality- but all distguishing between reusable components
of these attributes are recorded in the Library which are identical in their basic function, such as

0 catalogue entry, so that if a user is interested in a set of many "stack" packages which are
software that is, for example, written in Ada and implemented in different ways. They may differ in
that has passed acceptance-level testing, then only the ways they handle concurrency or memory
the software units meeting those constraims will management, and the system allows the search to
be seen. be constrained according to these attributes.

0 All units that are found using any search method
will be displayed to the user and upon request, the2. Aerospace Distributed Software code and associated documentation will be

Library retrieved into the user's current default directory.

0 2.L System Services 2.3. Metrics
The system currently offers four primary The Meric option is used to view variuus

options to the use. statistics and metrics that have been collected on

1. Search for and retrieval of soft e overall library usage. Metrics may be viewed by

units from the library library unit, site, or individual library user. Metrics
0 2. Review of current library metrics are gatheed on the number of library users, the

data number of library units, the number of retrievals
3. Viewing of recent library news items by sites or users and the average frequency of

and user comments retieval of any given unit, plus various other
4. Maintenance of the library catalogue metrics.

data

Search 2.4. News and Information
The News and Ihpovmaton failty allowsth

The Search option is the one of most interest to use vew Information rcnt a sons to

the general user. Users may search for software anduserenove en of the library. It also allows

using the hierarchical software classification users to view an edit legthy comments about the

taxonomy, keyword searches, or text searches.

Multiple taxononies for different software performance of individual library units.

development domains exist side by side, and
software units may be catalogued in several 2.5. Library Support
different taxonomies and/or taxonomy classes if Fmally, a separate facility, Library
needed. The user may browse up and down Maintenance, exists for the cataloguing of new
though software taxonomy classes that become Library units and the mainterace of various other
inceasintly specific, or specify a class of interest Liar informaton. This facity is used by the
and move directly to that class. An extensible Library Administraor and can define

ejmu will aet common abbreviations and classification taxom mies dete libray mt, and
10 trnM them into keywords or fll class names, modify unit descriptive informatiod

To limit the search, user may specify certain
search constraints to retrieve (for example) only
software that runs on a specific operating sym. 3. Conclusion
All searches may be constrained by the computer The fact is that there are still no commercially

0 the software runs on, the operating system it rns available systems that fully support software ruse
under, the implementation language it is written and are suited to the distributed GE environment
in, the amount of testing it has passed, and the date 7he existence of a sophisticated software retrieval
it was catalogued into the hibrary. Another type of system within GE Aemspace is critical to

179

Reuse in Practice 3

answering the increasing demands for improved
productivity. Tx auTent ADSL system provides
a practical efficient, and sophisticated software
retrieval system that is being put into place at GE
Aerospace sites now, and will be able to grow
along with GE's requiremnent for software ruse.

180

Position Paper

for

Reuse in Practice

Workshop

Pittsburgh, PA

11-13 July 1989

Constance Palmer
McDonnell Douglas Missile Systems Company

Dept. E434, Mail Code 0922232
P.O. Box 516

St. Louis, Missouri 63166
(314) 925-7930

181

Reas in, Practice 8 Aril 1989

REUSE IN PRACTICE

7bere has been talk of softwar reuse for many yews, yet in reality the full potential has; yet to be reached. in the past several
yews a software cosm have sky-rocketed, there has been an increased focus on mus a .iiof controlling or reducing
those comrnud as a .6mm of producing a higher quality product.

Some domesia have been mome succesul than others at applying munse technology. For example, the Japanese have been
Wy successwful in some baking and telecontuiafaus areas, adcmni n the U.S. have reotdsuccess wah other
tii applications. Owneaa that bw been puticularly prohlmm iseal-timte embedd(T)apiain

din4eope5 of thes applicaion wre particularly constrained in teusof both spac and tining n .urem nmd generally
booe very stringent reiability requirements. There has been (and S iIs) a grat deal of skepticism amg this group of
developrs about the viability of software mea in thirk applications.

7be Ckimmiom Ada Ibfissilh Packgs (CAMP) progm (being performed by thes McDonneil Douglas Missile Systems
Compny, and sponsored by the Air Forc Armament Laboratory at Eglin Air Formo Base) is aimied at addresing the issues
of softweremuse in an RTE domain. Tin author ha been involved in the CAMOP psiranmce it began in 1984, and thus,
tdo peaspectve as rms Pmam1 1 I e is in ters of museL of Ada in RIM applicahions. Phase I of the CAMP program
(refunred to as CAMP-I) was a hasibilt study. The primoary objectves were to determine if sufficient commonality existed

witnhe uminle operational flighi software domain to warrant the development of reusable software pants, arid if
comoinaolity wai foud, to identify and specify the parts. The feasibility of automating aspects of parts engineering was also
explored, and the requirements and top-level design for a parts composition system were developed. Doting Pb~se 2
(CAMP-2). the paws were coded and tesed as was the pat composition system (PCS). Both the parts and the PCS were
wed in the so-called 11lth Missile Application. Additionally, a set of armonic (ame electronic) benchmnarks was
developed. The I11th Mhilek Application *as a demnstration program that involved the use of both the reusable Ada pans
and the pars composition syte in the development of a realistic application Pbase 3 (CAMP-3) is currently underway.
The man tie awe maintennc and enhancemnen of the CAMP Ada parts, re-engineering the prototype PCS catalog
faecton in Ada, and development of a manual on "Developing and Using Ada Parts in Real-flame Embedded Applications".

1. TERMINOLOGY

As in most developing technology areas, there is no dear consensus on (he definition of terms in the software reutse area. thus
it is iporat for aumu mi1 vad speaker: to define what they mean. It may as yet be too early to standardizae on a complete
vocabulary, but one's perspective should be clarified for the aundlence. Over time, as reuse becomes more widespread. a
common set of definiton will eam fr or the reuseo community.

It is dlfficto come tpwith oue set of definitions bectals domain andi scope impact the meainginterpreration of different
tems. For *cuisc"enc .eureet itin a payroll system and efficiency requirements within missile operational
software may be order:s of maInd diPvFfe rt yet developers of both may discuss "efficiency" and assume that their
miig is dea. There is, of comae, some ovedap in defnitons, but it ns best that they be clarified to prevent

L. REPOSITORIES

A repository is an eietal aspect of a viable softwarue methodology. It is a cnalfacility for storing information
about available softwase puts, and may. in fact, contain the parts themselves. A significant aunt~ of work has been done in
We ua, and a nn 1eg of alerative stuctues and parts attribut sets bave been pyroposed and developed. Because muase is
an wil be practiced at many different orgmizatcmhl levels (e.g.. projec4 company, corporae industry. domain, etc.4 no
on tuctue wl miffice for all istintloes of.a puts repository.

(1) Scoe

One the m pulm prliinr paaetrta needs to be defined before a meuuingful discussion of repositories can
sinus is tha of xorp. Scope will impact the features of the repository that are affected by use diversity, which. of couse.I IrasI as t scope is broAened. Scope will affect feature such a the type of user interface that will be needed (user
isierfaces; ane an important: cousdderation in te" ooy developmne N. particularly as software engineers become mote
accustomed to multi-window graphical interfaces in their other software engineering tools), security requirements and access
P m-An' accessibility, rMbustness requirements, and domain covered by the repository.

Scope affects upp poet needs as wiell For example, a repository that is intP ede for age by a project or company, may need
just a librarian to verif that coding and doanme-tti stendards; have been met before a put is added to the repository.
Othe consoy checks could include chcig for test documentaation and reatiita A iarge-scale, commamety-wids, or -ee

C Palmer A

182

* Reuse in Practic 8 Auri 19n9

cpoa-wide. library might ewr a-sigificant staff to not only cekcode and documentation fat compliance with
u~dbut also perform inpe= e testing, assess the value of puts assist users in the use of parts (throughout the

lfeycle), develop new parts provide traing. etc-.

As the scpe br-oua.., the need for and demands on a 8--pooy suppor staff grow. It is envisioned ihat such a staff could
be invaluable in the tebouiogy and culurul transtion from custom code development to widespread ofwese.mo They
could prWie the truining an su ppr neede to alleviate ris to projects tha we cormideting a pasta-bued approach to
sofiwan develoanu

Scope 11pat repositories in aohrway as weL. As the scope broadns, the issn of who wil pay for the developmem of

Under the CAM pupm we developed a parts cmoionsyse that hod a parts catalog as its conertoe During
CAM-I weinutgati rqusiem and isus a ntd with a large-sale catalog syssem, taut the prototype CAMP

catalog wa scoped pmaiyfor juoject atr company use (likewise with the CAbP-3 re-emupneered Ada-boned catalog). It
was not so lreuto akithpcialto have multiple copies within a corylorstion (although there an configuration

* catio prblem Uscanmm fom imiutig copies of the catalog vexsus allowing distributed access to the catalog).

(2) Clauiflctlo

Several isue missed to clasuificadon aninI the discussion of repositories. Forirtc,
9 What entity is to be cataloset[? In the prototype CAMP.2 catalog, we bed separate catalog enties for Ada specs

* ad bodies, a well asfor soctung packages, bundles, etc-. As a result, the CAMP-2 catalog bal over 1100
inuia, although there were only 454 CAMP Mda pants developed. Thi classification scheme was problematic
fo the poemal nose - ther were just too many entitim The user could not easily MAn what be was looking
for. This directly coutadicts the purposme of a catalog: which is to (among other thtings) lower the cost of mmus by
frad in the acquisition of information about available parts. Others have raised the lanai of whetherP entities
such as .oum 6in design. or test code should be cataloged separately from the softwore puts themelves.

* *~ How wre eumes casexorized? During the CAMP program we were looking at a specific domain - operational
missile flight softwae- tus, we developed a functioual decomposition of the sofiwure (see Figure 1). The
advantage of thi camegormaton scheme was tha it was easy to implement, although it suffers from the
disadvantag e is no very flexible at extensible.

0IO nw9MW ~ I

A gur 1: CaM ns TrnM
* ~ ~ -NAAU CurrdteCM ascaao sbigt-nie rtogm rim wiey sb 0.AtougM hectlo Me

wil besa upforth CA P ar, W=t~tn theWL7 CA P us aonm, t.,a ie i b bl o etaliha ifer
taxonOmM wi eyIalteaaoG i hi iommnt TheA taooywlals emdfabe oU reape f
.j m u wt ol teCM P pute-a e h CM at aooy u I Otey quremohrstfpas

LVNNW -40MM2
~1-40mer

Unury CC183

Rm inPracice ____ SAdil 1989

for a dlfacot domain, they will was a tmoy for those parts aswell. The new CAMP catalog winl be able to handle this
siumie. and accommodat both taxonomies.

(3) Dmain

Domsain -- ciict depend on the breadt of definition of the domain and the number ofpart. If the domain of a catalog is
too narw, '.3mayhv to access multiple catalogs in order to obtain all of the pan inomton that they need in order to
develop, thir aplcho It is dicul to establish dlear cut boundauies between some domains - some domains have
sipifc oela ex. anzaommocs and avionica). It is bettPor to provide a mtuurig mehansm within the catalog than to

sepe th doaimextrnaly Le., by putting them in separate catalogs).

3. MANAGEMENT ISSUES

Then re- a umber of mangemen issues tha need to be explored when implementing a software 1retom program within an
xgmzuin.A few of them ar diheused here.

(1) Management Support

Marnagemnt support for software ire pis critical to its success. Organizatious need to realize two things.
" They can develop a competitive advantage by developing and using iuusable softwor in their product line

(given tha commonality exist- and can be developed in a reasonably cost-effective maznner).

* The industry as a whole can produce higher quality products if the kindiuy as a whole develops and uses
soft parts.

Once this realization comes, it is not dear that the DoD will need to provide Incentives to the induistry to practice feuse - the
orgntiations will mee that P-Pis in thik best 'interests1 In the Interim it may be necessary for the DoD to provide
Incentives became of the increased cost of developing reusable software and the increased risk of incorporating it into new
applications. The risk will dims over time as the technology and methodologies emerge and mature.

The conversion to a parts-based approach to software development will require cultural changes as well as technology
development. Software engineers ane no taught to loesoftware they no taught to Wreivt It. As Jean Srmet pointed
out in Reference [4J, wEver since the second square moet routine wavs writen, the programmung fildW has Zoos adequate
control of reftsabiity.-

The effort required to develop -high quality software need to be viewedau an investment rather than as an afterthought in the
overall syse development. Once the investment is made, the developmen costs can be amortized by reusing the software
in aldtional, applications. These ate attitudes that me not cuurently prevalent.

Minpment needs to have cofdnethat when they ar asked to sign up to software reuse uin thei projects, that they have a
resonable chsae of success. Once they we convinced of the value of software -,eime , they need to be willing to make the
investment W training their software engineern in both the development and me of reusable softwame They need to be
willing to develop a suppora poop that can assist pr-oje-ts in the tIiui- to -bsdapplication development. Projects
ar cwuram by their schedules and budgets and c ,ro be expected to fully ace a technology that is still somewhat
risky becaPme1 of its early stage of development. Mfanagement needs to be willing to share th risk with theme projects.

(2) Test-be Proams

applcations Will no sufftc for the -im peoplie who have hard scheule and requirements costait. etic test
prnbpu or shaowprjects an pVRovd the tpofat envirounent for software reuse tha can work out many of the issues
orIal susociaed with'i; n dsmonstate that it is viable, cost-effectie, and ultimately beneficial. The DoD can

Escllaw hemove to stwmr mer by fonding doese types of demonstration projects.

7he was one of the benft of te CAMP-2 I11th Missile application. The I11th Missile was so-called because it was no one
of the original tern missile software systm that was examined during the CAN& domain analysis. The goal of this effort
was to valdate the concept of parts usie in real-time embedded applications. The 11th MfIsaile application entailed the
redevelopment of mlrile guidance and navigation subsvsvem in Ado.. tning the CAMP pas. This effort was based mv ini
existing application dtwas iplemented in Jovial. i,*It require the de= pmn ofa DoD-Sd-2167 SRtS mid other
docmnaon as well Is soft we development and haudwaxe-in-the-op (te)smting. It was targeted at a 1750A
processor. Theexissence of theHJiteat envisomnen made this an attractive application to parallel.

C Palmrer 3

184

Res inMj*~ 8 Auril 1989

Mal dwvellmiem CHMs denomnstaled due Ada was rich enough to allow m""nlto of viuinaily all of the -eq-ad
futouly (th apliatio required only 21 lines of assembler code to accommaodate existing sys"e doyci5 z

81111 wiomrnedi the CAWP parts could be in-c-roaMd into a new RTE, development effort. The 11th Missile
drAelap-- - effort also highlighted the risks modIted with the appication of new methodologies (i.e., software mows in
RTE apiI m) Although the 1750A-turgeted Ada compiler was validated, it was nable to correctly compile many of tbe

* AP eerc (may of whc ue quite couflex in structunt). In fact., seveal comple.s were tried. 7b oblems
enco umuedland doe ralto otand dufin the I i itisile application development effort are detailed in the C~&2final
techical report (see Resnce [21).

Nf this bed been a full-scale engineering development effort the problem enonee would have been disastrous Many of
the geu c bed to be wmaa1 hurandaed. The taskIi g overhead was prohbitive. The compiler was not able to gment
object code due was effcisenou gh foir the navigation subsystem to run in real time. Numerous lemra bugs were also
I*m uzcopudwiththe compiler.

7he upside of tdu effort was dot this work and the dose interaction of the development teaw with the compiler vendor,
spood compier umhxovemesm that will benefit all usern of this canniler. This higih the importance of establishing
Us-be Foa the con sa as pallifiedee. and facilitat maturation of the requited indiology and metbodologzs

* (3) Rtunem u hvesisnet

It is too early to determ yin exactly when the payoff will occor in paa nows Although there wilt be gains during
devlopent- geatr pns illoccr asupport enviroments mat1 e and the cost of reuse decieases - we must also

dlot tmainoe phs fo paof Ehere we should see intased reliability in the products be-con-,e of the use of
extenively uesed software parts. Ahough theme is some data available in commercial businem-type applications, there is
Mo Yet siaficient data available for RTE applications to determine the exetand ining of the payoff for software parts
r".

We need to explore ways to maxmnize tese and vrduce the cost of reuse. This can be accomplished through training and
through the development and deploymen of tools that =upor pan-based approach to software development. Some of
thsdu eso ban been explored during the CAbP aclWing prototype development of a set of integrated facilities
to sopport s"ware development with puts (swe L=m [1, 3]).g

* 4. DOMAIN ANALYSIS

Domain anlysi is the miyduof a representtive st of applictions fom agivendoma in with the Wnt of determining the
common objects operations and structuresP (if they exist). Domain analysis requoite. firat tha the domain be defined. It is
not always a siwe i m , to define and bou nd the domain that Will be c os ieed duning a domain analysis - domains
oftn overlap. Domain uualysis is tedious mand tme-consuming. requis ing the examination of existing software
docunentation and source code, as well as furdher work with the original developes if they awe still available. It provides an

invstgatvechallenge. TheP eminnce of commonality within a domain cnot be taken for grzed. The main output fromn
a domain anlism -r (1) the identilication of common objects, operations, and stuctums, and (2) the domain model.

Domain anayse provide the foundation upon which to build a sotaeprsdvelopment effort but the development of
techniques and nmod for pefrigthem is soil in the early stags CAPt began with a domain analysis that involved
t m0Isi operational fHisfwe from a set of tNo missiles. Rom this undys*s we identified aproximately 250
common pu nd.. developed a toxnmuy with whc to categoriz oe m s We assumed (uud were proved conrec) that

* we wudidentify ulditional pus once we actually began development o =the omtmon puft. Ow And purt tmon- at the end
of CAMP-2 was 454.

Theres = as yet no widely accepted or established rehtqe o eforg a do aalysis but a number of Woeus have
been Identified. One actor that is al-ical is the selectioni Of an2 dequate domain repun wation stupon which to base the
malysu. Prcia co If r'eve-- Nt the eainatlon of all p 11a8or Witi a domain, &n., it is important that the

saple set include dpl1 o t =su truly reposentative of the Imin as it has been defined.

5. IMPLEMENTATION ISSUES

Because tie CAWP domain was missile operational flight softwa, we wemeveryconcernod whheffciency of the parts that
we developed. We had to balnc our goals of efficiency. s.wbility. xWi flexibility whzen impleemning tho pauL Although

* we de veloped the cde to be as .fficient as possible, we reiogrtized that we migh not msc: .dfe needs of all usms but felt that
the end ame still wins by 1eusng code that requires only slight "tweaking" to meet his requiremens In many case the code
will meet the vses requiremt without any modification. Reuse is not an all or nothing prpsiin

C. Palmer, 4

185

Reuse in bxu~te 8 Aoril 1989

We aio pm, ed parts with altemaive dam a t-ture s for with different efficiency requiements. For
ample. we pvd a number of alternative m --- s i s le is. If a ue was relatively unconcerned with efficiency,

be could n the packag tat provided full-storage maIx rep usemaion, but if he were concerned with space utilizadin he
right want to use alnentive, pecial-purpose on m as a coodinat marix (if he knew he was workng with
F Mdhu-es). We also provided trigoometric functions with various degrees of speed and accuacy to accommodate

&fsemnt project eeds

Optimizing compilers: ae essential to the production of object code that will meet fhe efficiency equizrmeno of Yeal-time
embedded a The CAMP I1th Missile development team provided significant feedback to the compiler developer
to spur matlon of sofficiendy optimied compiets.

Compile for use with musble software will need to be able to remove .&ed e withdn packages, Many times a
p wil conain more than just the routines of interes to the applicatio developer, and these mua be eliminated in order
to out undly mrden the uer.

The use of software fhom an external source need not imply that there is a secmity risk. or a risk of introducing a virus to
ome's opmra"ng rm se u ThW is not Senerally a cocern wben using commercial softwue. Application developers ned
to be able to have the same level of confidence in ruamble softwae supplier as they have in their commerdal vendors. This
isone mson why it s importu tnt software pam be "validated" prior to making them available in a catalog or repository.
Pun repostaes sbould provide a mem for logging user feedback about individual parts; these comments can then be used
by susequent uses in their evaluaion of parts for their projects, and contribute to the confidence level a user can have in the
cmect operation of the par.

6. ISSUES

Thbere r many issues associated with software muse that have not been addressed in this paper. A few of them are
emnerated below.

* At w1at level should ruse take place (Le., what should be rmused?)? Code? Design? Requirements? Ada
specifcations are often equated to top-level design and bodies equated to detailed design, so with this point of
view, designs do get mused in Ada applications.

" What is the best architecture for use in the development of revsable software pans?

" What type of traiing is needed to give software engineers the skills to both develop and um reusable software?

" What time horizon should we be looking at for the tecbnology needed to support software muse? Ae we
looking at what can be accomplised now and in the ne-erm or what can be accomplished in ten years?

" What will the impact of muse be of data ights and other legal issues?

7. ABOUT THE AUTHOR

Tb8 author has been at McDomell Douglas for over 5 years. md has been involved in exploang the polential of software
muse since the inception of CAMP in September, 1984. The author was respoMlble for the parts composition system
hasihility study during CAMP-, and then for nquirements design, and much of the implementadon of the prototype parts
Cmpsi.tn system during CAMP-2. She is currenly the proranm manager for CAMP-3, and is exploring many soflwar
muse issue while developing (as part of CAMP-3) a manual on pam developmt and m in eal.time application. The
thor bs am LS. in Computer Science from Wasbington University in St. Louis, and a B.A. in Mathematics from George

Wrhiigton University in Washington, D.C..

C. Palmer 5

_186

* Rems in Macce 8 Awil 12§9

References

1. McNIchoII, D.G., C. Palmer, el at. Common Ada Mi.wile Packages (CAMP), Volmhe I: Softwar Pam Compfoition
Study Resut. Tech. RepL AFATI-TR-85-93, Air Force Armament Labortory, Air Force Systems Command, United
Sumtes Air Force, Eglin. Air Foce Base, Fonda., 32542, May, 1986. (Must be acquied fvm DTIC using access number
B102655. Distibution limited to DoD and DoD conractors only.).

2. McNictio, D.G., C. Pahner, J.M Ne, et aL Common Ada Missile Packages - Phasie 2 (CAMP-2), Volume H: IIth
Misile Demeumulo. Tech. Rept. AFAr-TR-88.62, Air Force Armamet Laboratory, Air Force Systems Command,
United States Air Fore Eglin, Air Frce Base, Florida, 32542, November, 1988. (Distibudon limited to DoD and DoD
con- o Only.).

. Mc idsA, D.G., S. Cohen, C. Palmer, et al. Common Ada Missile Packages - Phase 2 (CAMP-2), Volume I: CAMP
Pam and Pans Coqmoii System. Tech. Rept. AFATIL-TR-88-62, Air Force Amsament Laboratory, Air Force Systems
Commnd, United Stams Air Fwce, Eglin. Air Force Base, Floida, 32542, November, 1988. (Disuibudoo limited to DoD
and DoD omer-atms only.).

4. Snamet Jean E. "Why Ada is Not Just Another Plogranming Language". Conmtankaons of tle ACM Vol. 29, No. 8
(Augt 1986).

C Palmer 6

187

O0

The Reusability Library Framework -
Working Toward An Organon

James Solderitsch

Uniey Defeme Syatema 0
P.oi Ruearci Center

P0 Box 517
Pooi, PA 19051-0517

Internet: jjs@prc.unisys.com 0
TUCP: {sdcrdcfbpa,psuvaxl}!burdvax!jjs

Phone: 215-848-7376

Introduction

This paper describes work-in-progress that began under the STARS Foundations
program with a contract administered by the Naval Research Laboratory (contract
number N00014-88-C-2052). Current plans call for work to be continued on the
Reusability Library Framework itself and on using the framework to support the
construction of library systems at various levels. In addition, Unisys plans on exploring
other applications areas which can benefit from the use of knowledge-based techniques
implemented in systems designed and engineered from an Ada perspective.

This work has been reported on at a number of previous conferences
(Solderitschss (WaflnaugSl [Solderitch8gl. This paper will present a summary of this 0
material and then outline plans for future development. In doing so, the paper will
address some of the key issues affecting reuse technology, and the RLF approach to
some of thes issues. A workshop atmosphere will enable others to evaluate and critique
the RLF work in a manner that is not possible during actual conferences and through
private correspondence. In this way, the RLF technology can both influence, and be
influenced by, developments that are underway across the spectrum of reuse-oriented
projects and investigations.

RLY Approach

Ads development efforts during the 1980's have sueoeded in producing an
increasingly large collection of Ada componnts Individual collections range from the
general purpose (Ads Slintel repository, EVDBGrace commercial parts) to more narrow,
application-specific collections (CAMP parts [CAMP85j). In any case, effective ways
and means of collection management are required in order to take advantage of them.
At the very least, support must be provided for retrieval, Insertion and qualification of 0
components in the context of a supportive library or repository management system.

188

92..- -- -... a.t 1 Workshop I

Various clamification schemes have been proposed Prleto-DIas87a] but fixed
classification schemes can be unnecessarily limiting. An approach that permits a

* library organization to evolve along with the components being kept in the library is
better able to support software collections an they change both In size sad maturity.
Moreover an adaptable library organization Ii better able to serve the needs of focused
application domain. Important semantic attributes of software artifacts are often
dependent on the domains to which that they belong. As such, library support software
must be semantically tailorable to represent and use such attributes.

The RLF technological approach is founded on the premise given in the preceding
paragraph. Broad objectives of the RLF project include.

" develop knowledge-based interfaces to repository (object) management systems;

" investigate the mapping between application domain and reuse technology (part
* selection, part composition, part generation);

" go beyond supporting retrieval of static parts to include program generation,
system/software configuration, system/software testing and even system/software
design and requirements analysis;

" support the basic integration of reuse technologies (knowledge-based and
* generation techniques); and,

" perform some applied research in domain analysis.

On a smaller, near-term, scale, the RLF aims to:

" develop foundations technology essential for building "intelligent libraries" for
reusable software components within specific application domains; and,

" develop as part of the RL reusable, stand-alone components supporting
integration of knowledge-based techniques into other Ada applications (beyond the
library domain).

The approach taken by Unisys seeks to overcome some of the weaknesses apparent
• in other classification-based reuse support systems One important aspect is the

accessibility of the classification scheme itslf and the relative ease by which the
classification data base can be tailored and extended. Moreover, the ELF provides the
use with guidance on the use of the classification system so that the user is not forced
to become an expert in the clasifcation scheme to use it effectively.

Advntage at Domain-SpemI ty

A cornerestone to the RLF is Its reliance on a doma-epec flcpoint-of-view. In the
context of the RLF, a domain is comprised of a st of exsting and anticipated software
application that provide a common function or similar capability. Domains can be

* further sub-divided into horizontal and vertical domains. A horizontal domain Is one
(e.g. common data structure definitions and operations) whoe contents intersect with
vertical domains oriented around a company's line-of-businem (LOB) or specialized
applications area.

History has shown that many of the past success stories for reuse have come
0 within certain well-defined domains (e.g. mathematics routines). Unisys believes that

the impact and successful application of a reus-based approach to software design and

UnPsyS P e issea reh Center 15 Apri 19ss

189

Position Paper-. Reuse In Pragtee Workshop 8

production will be greatest for (vertical) domain-specifle libraries. For example, -a
greater proportion of a typical application can be built from parts withdrawn from such
a library. There is also a higiher expectation that systems built from such parts will
have a closer functional fit and be more efficient. The capability exists for reusable
sub-systems to be created via part selection and configuration.

There are real cots in establishing such a library and not every domain is mature
and stable enough to support such an intensive reuse-based approach. Domain analysis
[Prieto-Dlasg7b] to support such libraries can be hard, and is certainly expensive and
tim-onsuming. However, domain analysis is a fundamental prerequisite for a reuse
environment to support the extended life-cycle of an application domain. Such support
is analogous to the way that some software engineering environments support the
traditional waterfall life-cycle. The goal of domain analysis is to provide fundamental
support for the organised growth and development of software applications for the
domain, both from the consuming side and producing side of the software equation.

RLF Overview
Figure 1 illustrates the basic architecture of the RLF at the end of the STARS

Foundations contract phase of the project. The final product of this project was a
prototype librarian application covering the domain of Ada benchmark programs.

All components of this system were developed from an Ads perspective using basic
principles of data abstraction, information hiding and strong typing. Abstract data
types were produced after analysing the structure of proven Knowledge Representation 0
Systems (KRS), first by focusing on the operations provided by these systems, and only
later considering possible internal representations of knowledge held within the system.
No attempt was made to naively import features native to AI programming language
paradigms such as pattern matching or theorem proving.

AdaKNET is a semantic network system useful for capturing static information 0
describing the basic state of some enterprise or subject area. For example, our two
initial uses of AdaKNET were to capture some basic Ada, semantics regarding Ada
compilation unit structure and portions of the Ada type lattice for use by Gadfly, an
Ada unit test plan generator, and, to repreent some basic relationships among Ada
benchmark programs for use in an Ada benchmark program library system. An
important part of our work concerns how to combine the representational power of
AdaXNET with other systems, including other KRSs.

Ad&TAU is a rule base system that can be used as a stand-alone stem or in
conjunction with other knowledge representation systems such as Ad&KNET. Rules
collected into rule bases are used to infer new facts from a collection of initial fact.
New knowledge is added to a system employing the facilities of Ad&TAU so that
AdaTAU is acting like an expert system that enhances the capabilities of the original
system. When used together with a system like AdaKN!T, AdaTAU becomes part of a
hybrid KRS where the role of Ad&TAU is to facilitate the capture and use of dynamic
Information that is normally outside the realm of the other cooperating KRS. For
example, the benchmark librarian rules are used to advise librarian patrons of
operational information regarding benchmark components that are not easily
discernible within the benchmark taxonomy provided through AdaKNET.

Unisys Paoln Resemah Center if April 199

190

*PoesIon Paper.- Reuse In Pias Workshop 4

RLF

Representation System

000

Unt 0afy Lirra Repository0

11gure 1. IL? Arcitecture

A careful separation of the content of knowledge bases from their basic
organisation and available operations is provided througha the use of two specification
languages developed explicitly for the RLP [SolderitichSoj. RBDL (Rule Base Definition
Language) and SNDL (Semantic Network Definition Language) are used to specify rule

9 and fact base descriptions for AdaTAU and semantic network descriptions for
Ad&KNET respectively. Individual knowledge base definitions awe translated
automatically to an Ada compilation unit that, when executed, produces a machine

Unisys Peonl ReesaCh Center 15S April 1989

191

Position Paper. Reus In Practice Workshop G

readable version of the original specifications. The design and implementation of these
specification languages was accomplished through the use of SSAGS - Syntax and
Semantics Analysis and Generation System [Payton$2J. SSAGS itself is an Adsabased
tool developed at Unisys that Is especially appropriate for the specification of small,
application-pecifle languages (AS~s) and their translators.

The end user typically works directly with an application built on top of
AdaCNET, AdaTAU or a hybrid of both of them. In addition, an application makes
use of its own data structures. For example, in using the Gadfly application, knowledge
about an Ads unit under test is amembled and stored within a hybrid knowledge base.
From this knowledge gained by examining the Ada unit directly and as a result of a
dialogue conducted with the user, suggested test case plans are generated for the user.
For the librarian user, a repository of Ads modules is available for direct examination.
Alternatively, the user can browse, or be "expertly" guided through, an information web
that captures essential information about the contents of the repository. A library
patron offering a new component for the repository can be guided to the right insertion
point and, using an integrated form of Gadfly, be advised of necessary quality control
measures to be taken before the component can be officially installed.

Knowledge Representation and Librarians

AdaKNET provides the taxonomic structure for a domain. Using the information
web defined via AdaKNET, a user can locate components through multiple access
paths. Information about components and their relationships needs to be stored only
once at the proper level and, through inheritance, that information is available
wherever it is needed. This localization of information also applies to rule bases that
enable the network to explain itself to the novice or casual user. AdaKNET also is able
to support the representation of incompletely specified components including generics
and the use of part generators.

AdaTAU's principal role for librarians is to provide navigational advice to the
user. Information that is not readily apparent in the network, or information regarding
components that are distant (in terms of network links* from one another, can be
supplied through attached rule bases. In addition, AdaTAU rules can be provided for
safe component addition t(, the library, as well as part qualification.

Figure 2 provides a skeletal view of the Ads benchmark librarian application. 0
This application assumes an initial browser-style interface so that the user controls how
and where to look for information. In addition, other user modes are provided
(classifier, advisor, adder, etc.) that cause the application to take a more active stance
in support of the user.

0

AA Language ousue and Experiems

Many issues relating to Ada and its connection to the design and implementation
of reusable systems were discovered during the course of building the RLF system.
Theme issues will be explored further during the continuing work on the RLF. The R.LF
stem itself makes heavy use of generics and relies greatly on the use of dynamic

memory to support its storage of network and rule base information. In several cases,

Unisys Paoli Rsseareh Center 15 April 198g

192

Position Paper -Reuse In Practice Workshop S

Browser Editor

Advisor Claunifer

Unit Adder Reverse Translator

0

Ad&KNET Model of the Benchmark Domain
with attached AdaTAU Rule Bases

FIgnr 2. Librarian Mclhteeture

particular compilation systems did not perform adequately In thaw area. In other
caes, Ada code could have been made considerably more readable and general if some

Unisys Pso l iessh Centse 15 Ap4lU 19"

193

Postlon Paper - Reuse In Practie. Workshop

-A" restrictions were not in place. One particular realisation of this is the lack of a
package type in Ada.

Some of the reuse support provided through the RLF could be considerably
enhanced by an integration of RLF knowledge bases with the Ads library structure
managed by the Ad& compilation system used in conjunction with the RLF. This kind
of interface is important for tightly integrated reuse-support systems. The RLF system
also exposed some needless portability obstacles in relation to source code location
(within host computer file systems) and Ads librar-based restrictions.

Futue Evolutuon

The RLF provides basic technology that is pointing in the right direction. Crucial
features of this technology include:

" the ability to support the matching of reu techniques to domains (particular
techniques include constructive, knowledge.base-asisted and generation);

" a separately maintained domain model; and

" support for domain evolution.

An organon [SimosS8l is the culmination of the RLF technology. From the
dictionary, an organon is defined to be " .. an instrument for acquiring knowledge;
specifically, a body of methodological doctrine comprising principles for scientific and
philosophical procedure and investigation". RLF features and capabilities will be
enhanced over time to support library content evolution (e.g., replace family of part
variants with a suitable generator); automatic maintenance of library content and
persistent user models- and, automatic solicitation for new components to cover gaps in
library coverage.

An organon will effectively support wide-spectrum reuse including requirements,
design and test cases. In the end, an organon is a central repository of domain
expertise that effectively combines people, plus emerging and maturing methods, plus
supporting technology.

Unly Pel Research Center 15 Ap r I OU

194

Pselion Paper -Reuse In Pretee Workshop 8

References

[CAMPSJ C. X Anderson and D. G. MeNicholl, "Common Ada Missile Packages
(CAMP) Preliminary Technical Report, Vol. 1," STARS Workshop
Proceedig, April 1985. Contract FO 863544-C-0280.

[Payton8] T. F. Payton, S. . Keller, J. A. Perkins, S. Rowan, and S. P. Mardinly,
"SSAGS: A Syntax and Semantics Analysis and Generation System,"
Proceedings of COUPSAC 18, 1982, pp. 424-433.

[Prieto-DiasS]j R. Prieto-Dias and P. Freeman, "Classifying Software for Reusability,"
$E oftwsre, 4(1) (January 1987), pp. 6.16.

[Prieto.Di S7bj R. Prieto-Dias, "Domain Analysis for Reusability," Proceedings of
COSAC 87, Tokyo, Japan, October 1987.

[Shio881 L Simo , "The Growing of an Organon: A Hybrid Knowledge-Based
Technology and Methodology for Software Rouse," Proceeding of 1988
Notional Institute for Softwe Quaft end Productivity (NTSQP)
Confrenc. on Software Reusabiity, April 1988, pp. E-1 through E-25.

[Solderitsch88] J. Solderitsch, M. Simos, and K. Wallnau, "Reusability Library
Framework (RLF)," Conference Proceedings of TRI-Ade '88, October
1988, pp. 250-257.

[Solderitech891 J. Solderitsch, K. Wallnau, and J. Thalhamer, "Constructing Domain-
Specific Ada Rouse Libraries," Proceedings of SevenA Annual National
Confrence on Ad. Technology, March 1989.

[Wallnau88 K. Wllnau, . Solderitsch, X. Simo., R. McDowell, K. Casmell, and D.
Campbell, "Construction of Knowledge-Based Components and
Applications in Ada," Proceeding. of AIDA-US, Fourth Annual
Conerence on Artificial Inteligence & Ads, November 1988, pp. 3-1
through 3.21.

Unbsr Pma mreob Center it Auon 19N

195

DEPARTMENT OF THE ARMY

US ARMY INVORMATION SSTIMTS1M 3OWARE DKVZOVMKrNT CINTZWWASKINGTON

FORT BZLVOIU. VMGRNA oin6."a

ArMMN F AR 2 1989
RAPID Center

James Baldo, Jr.
Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311-1772

Dear Mr. Baldo:

Attached is a position paper written to gain the participation of
Terry Vogelsong in the Reuse in Practice Workshop to be hosted jointly by
ACM SIGAda, the Institute for Defense Analyses, and the Software
Engineering Institute from July 11-13, 1989. Mr. Vogelsong is a technical
staff member of the Reusable Ada Packages for Information Systems
Development (RAPID) Center within the U.S. Army Information Systems
Software Development Center - Washington (SDC-W) located in Falls Church,
VA. SDC-W's mission is to develop and maintain management information
systems for the Army.

Mr. Vogelsong, as RAPID's representative, has served in the U.S. Army
Information Systems Software Center since 1985 and has been a part of the
RAPID project since Jan 1989. He has attended several conferences and
reuse workshops and has briefed RAPID to industry and internal
organizations. His knowledge of RAPID and how to support both developers
and users makes him an excellent candidate to attend the Reuse In Practice
Workshop. Mr. Vogelsong can be contacted at (703) 756-5202/5003 or at the
following address:

USAISSDCW
ATTN: ASQBI-WRC STOP H-4 (Terry Vogelsong)
Fort Belvoir, VA 22060-5456

It is critical that RAPID participate In this workshop to learn how
others have resolved reuse issues. As RAPID will be operational on May 1,
1989 and the workshop occurs in July, RAPID may have answers to issues to
be discussed. Having a functioning library system makes RAPID a qualified
candidate for attendance. RAPID looks forward to receiving an invitation
for Terry Vogelsong to participate in the Reuse Workshop to held in
Pittsburgh, PA from July 11-13, 1989.

Q*Z H. PPL, JR1.
Colonel, AG
Commanding

196

REUSABLE ADA PACKAGES FOR INFORMATION SYSTEM DEVELOPMENT (RAPID) -
* AN OPERATIONAL CENTER OF EXCELLENCE FOR SOFTWARE REUSE

The following position paper describes the Reusable Ada Packages for
Information Systems Development (RAPID) Center located within the U.S.
Army Information Systems Software Development Center - Washington (SDC-W)
located in Falls Church, VA. SDC-I's mission is to develop and maintain
management information systems for the Army. Particular emphasis is
placed on the library system used to catalog, analyze, and retrieve
reusable software components.

Overview

RAPID, initiated in July 1987, was conceived and developed in support
of the Department of Defense Ada initiative. The major role of the RAPID
program is to promote the reuse of Ada software, and further, to reduce
the cost of system development and maintenance. While providing real
services and accomplishing useful tasks during prototype operations, the
RAPID Center is a learning laboratory: evaluating and refining reuse
methods and techniques; accumulating a store of experience and a cadre of
experienced personnel; and refining RAPID guidelines and procedures.

Phase I of RAPID, completed in January 1989, included developing the
* software for the RAPID Center Library system and authoring Initial policy

and procedure documents. Phase 2, which begins on May 1, 1989, is an
18-month Pilot RAPID Center operation. During the first nine months, a
single development effort will be extensively supported to prove
reusability concepts, refine library software, and resolve contractual and
management Issues. With a limited scale of operation, mistakes and

* reusability issues can be detected early and corrected or resolved with
minimal damage. The remaining nine months will test the feasibility of
servicing five Software Development Centers within the U.S. Army
Information Systems Software Center (ISSC). Follow-on phases include
expanding service to all of the U.S. Army Information Systems Engineering
Conmand (ISEC), Department of the Army, etc., as needed and as funding

* allows.

After the successful pilot operation is completed, the scope of RAPID
will extend to multiple projects, hardware, operating systems, and
organizations. The initial domain analysis covered only information
management systems, i.e., financial, logistical, tactical management
information, communication, personnel/force accounting, and miscellaneous
"other software" system. But the policies, procedures, and guidelines
developed in support of RAPID reuse are generic and evolutionary and
therefore should apply to any domain.

page 1

197

Staffing

RAPID will have a staff tailored to perform and train Ada reuse,
encouraging design methods and architectures that build from reusable
components. Ada Consultants or Engineers from RAPID will provide 0
consultation on reuse throughout the entire life cycle of project
development and technical assistance on the use of the RAPID Center
library and its reusable components. RAPID System Analysts or Designers
will attend project reviews to advise on reuse issues, stay abreast of
projects, advise project staffs, identify opportunities to reuse existing
components, identify potential reusable components, and provide guidance
and support to programmers integrating reusable components and
documentation into applications.

Comand-wide training by RAPID staff on Ada reuse will include the
following course topics:

a. How to implement reuse throughout the life-cycle, from
conception through maintenance.

b. How to write reusable, portable, maintainable components.
c. How to use the RAPID Center Library, including how to insert

components into new development efforts.

RAPID Center Library

The heart of RAPID is the RAPID Center Library (RCL). RCL is much
more than a "repository." RCL is an operational, Interactive library
system used for the Identification, analysis, and retrieval of Ada 0
reusable software components. RCL operates on a Digital MicroVAX II
located at SDC-W and consists of 30,000 lines of Ada code. The system was
designed to be dynamic or modifiable to adjust to the supported domain.
Modification is performed through internal system 1ibrary functions via a
menu or keypad keys. None of the 30,000 tines of Ada code need be changed 0
to support a modification.

RCL user functions involve the identification and extraction of a
reusable software component (RSC). The user Identifies the requirements
of a component needed through a faceted classification scheme (explained
below). The library takes the description, searches for, and displays a
list of "candidate" RSCs. Internal system tools aid in the selection of
an RSC. The present tools are:

a. Analyzing the candidate list of RSCs.

1. Displaying the number of times each RSC is used,
2. D splaying the nmber of reported problems,
3. Displaying a reusability measure, and
4. Displaying a complexity measure.

page 2

198

Present RCL tools continued:

b. Browsing through an individual RSC on candidate list.

1. Viewing the RSC abstract,
2. Viewing the RSC description,
3. Viewing a list of documents that support RSC,
4. Viewing list of problem reports and text of each problem

report if necessary, and
5. Viewing numeric measures of lines of code, number of

0 uses, outstanding problems, etc.

c. Extracting a selected RSC from candidate list or downloading

" the code and documentation.

d. Maintaining a search session or "candidate" list of RSCs.

1. Saving the session,
2. Restoring a saved session,
3. Deleting a saved session, or
4. Clearing the session.

Faceted Classification Scheme

RCL uses a faceted classification scheme to store and retrieve RSCs.
The classification scheme is a method by which the universe of knowledge
is built up or "synthesized" from the elemental classes. Synthesis is the
process of assembling elemental classes to express a superimposed,
complex, or compound class. Facets are the arranged groups of elemental
classes that make up the scheme. This scheme is based upon the Ruben
Prieto-Diaz approach of two groups of describers. The first is the
"functionality" group consisting of function, objects, and medium
attributes. The second is the "environment" group, consisting of system
type, functional area, and setting types of facets.

Facets -- properties an RSC my have -- represent different ways of
looking at a component. For each facet, specific descriptive terms,
called facet terms, classify an RSC within that facet. Terms with the
same meaning are known as synonyms, and a group of synonyms is a concept.

* One term from such a group is selected as the representative term (the"name" of the concept) and serves as the facet term used for the actual
classification of RSCs. The remining synonyms are keyed to the
representative term in a list called a thesaurus. When users enter terms
to describe the desired component, any one of the synonyms is equivalent
to the representative term.

Not every facet need be employed in classifying an RSC. However, the
facet's function, language, and certification level should always be
given. More than one facet term may be given for a single facet.
Component classification can be changed or augmented as required. The
RAPID Library classification scheme is designed to allow additions and
changes to improve its descriptive power.

page 3

199

The initial set of facets used by RAPID is as follows:

a. Function - the process the component performs, such as SORT,
SIGN, DELETED, etc.

b. Object - the conceptual object the component operates on, such 0
as STACK, WINDOW, PERSON, etc.

c. Algorithm - any special method name associated with the function,
such as BUBBLE for the function SORT.

d. Data Representation - the data structure for the physical
representation of the object within the component, such as
LINKED LIST, RECORD, POINTER, ARRAY, etc. 0

e. Unit Type - the program structure of the component, such as
FUNCTION, SUBROUTINE, PACKAGE, TASK, etc.

.,f. Hardware - the hardware configuration(s) on which the component
operates, such as VAX, RATIONAL, etc.

g. Operating System - operating system associated with the hardware
configuration such as VMS,.MVS, UNIX, etc.

h. Language - the programing language that the component is written
in, such as ADA, PASCAL, C, etc.

i. Area of Application - the application area that the component
applies to, such as PERSONNEL, LOGISTICS, etc.

j. Degree of Certification - an indication of the certification
level of the component, such as TESTED or CERTIFIED. 9

RAPID Library System Features

RCL system logs a variety of Information for the purpose of tracking
its performance, evaluating possible changes to enhance the system, and 0
triggering RAPID Center activities. The logged information includes RSC
use, search failures, suggestion box, and user accounts. Some of the data
is automatically incorporated into the RSC catalog, while other
information is available through reports. These reports and feedback
mechanisms aid the RCL System Administrator in determining if the search
apparatus needs to be modified or other actions need to be taken. The
primary function of the System Administrator is the storage and cataloging
of RSCs. Additional duties include maintaining user accounts, logs,
suggestions, and updating RSC analysis and search features.

When a user extracts an RSC from the library, a date must be
specified when he or she expects to be able to provide OfeedbackO about
successes or problems with the RSCs. These experiences are analyzed and
several actions may be taken, as appropriate: updating the RSC's use
history in the library, initiating a problem report, recommending
enhancements to the RSC, recommending new RSCs, or recommending changes to
the library search apparatus. Feedback is solicited about functional fit,
cost savings, ease of installation, actual versus expected performance,
problem, recomendations for Improvement, and any other user comments.
Another example of a system generated log is search failure information.
This may result in recommendations for new or enhanced RSCs or in updates
to RCL search mechanisms (i.e., the classification scheme and the
underlying thesaurus), depending on the cause of the search failure.

page 4

200

Reusable Software Components

The RAPID Center Library system is presently operational and -the
RAPID staff is populating the library with RSCs. Sources of RSCs include

0 reviews of ongoing projects, comercial off the shelf, fielded systems,
-and RAPID developed. ISEC's reusable goals that pertain to the reusable

component are maximum reusability, efficiency, flexibility, ease of use,
and protection against misuse.

All RSCs will be evaluated for quality, usefulness, complexity,
* portability, and profitability. The checklist below will be used to

determine if an RSC is to be stored in the library:

a. Review for portability in accordance with ISEC Portability
Guidel ines.

b. Review for reusability in accordance with ISEC Reusability
Guidelines.

c. Review for reliability.
d. Review for maintainability.
e. Review for proper testing and test data.
f. Review for complete documentation - abstract, reuser's

manual, function, interfaces, etc.

The evaluation of RSCs will be aided by the use of an automated Ada
Measurement and Analysis Tool that measures and evaluates the quality and
software factors of reusability, reliability, portability, and
maintainability of the developed software. Exactly which tools will be
used and to what measurement levels the tools will be set will be
determined during pilot operation. The ultimate goal will be to include
components that are of high quality, documented, and tested.

Summary

Establishing and operating the RAPID Center required a commitment of
resources and personnel by SDC-W management. Until software reuse becomes
a away of life," the RAPID Center must lead the way. Many issues remain
to be resolved, several of which will be discussed at the Reuse In
Practice Workshop. But with sound policy and attention to the needs and
perceptions of the supported development staffs, the RAPID program will
more than pay for itself. RAPID is truly a center of excellence for
software reuse.

page 5

40 201

Distribution List for IDA Document D-754

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Lt Col James Sweeder 3
SDIO/ENA
The Pentagon, Room 1E149
Washington, DC 20301-7100

Others

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Mr. Karl H. Shingler 1
Department of the Air Force
Software Engineering'Institute
Joint Program Office (ESD)
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Dr. Keith Bromley
Code 7601T
Naval Ocean Systems Center
271 Catalina Blvd.
San Diego, CA 92152-5000

Ms. Christine Braun
Contel Technology Center
15000 Conference Center Drive
P.O. Box 10814
Chantilly, VA 22021-3808

Brian Baker
NAVDAC
8th & M Street, S.E.
Washington, Navy Yard
Washington, DC 20374

Jim Perry
GTE Govenment Systems
77A Street
Building 12
Needham, MA 02194

Distnibution List-i

NAME AND ADDRESS NUMBER OF COPIES

Capt. Jack Rothrock 1
USAISSDCW STOP H4
Fort Belvoir, VA 22060-5456

CSED Review Panel
Dr. Dan Alpert, Director 1
Program in Science, Technology & Society
University of Illinois
Room 201
912-1/2 West Illinois Street
Urbana, Illinois 61801

Dr. Ruth Davis 1
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, Va 22201

Dr. Thomas C. Brandt 1
10302 Bluet Terrace
Upper Marlboro, MD 20772

Dr. C.E. Hutchinson, Dean 1
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano 1
IBM, Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Dr. John M. Palms, President 1
Georgia State University
President's Office
University Plaza
Atlanta, GA 30303

Dr. Ernest W. Kent 1
Philips Laboratories
345 Scarborough Road
Briarcliff Manor, NY 10510

A
Distribution Liat-2

NAME AND ADDRESS NUMBER OF COPIES

Mr. Keith Uncapher, Associate Dean 1
School of Engineering
University of Southern California
Olin Hall
330A University Park
Los Angeles, CA 90089-1454

IDA

General W.Y., Smith, HQ 1
Mr. Philip L. Major, HQ 1
Dr. Robert E. Roberts, HO 1
Ms. Ruth L. Greenstein, HQ 1
Ms. Anne Douville, CSED 1
Mr. Terry Mayfield, CSED 1
Dr. Richard Ivanetich, CSED 1
Dr. Richard Wexelblat, CSED 1
Dr. Dennis Fife, CSED 1
Mr. James Baldo, CSED 2
Mr. David Wheeler, CSED 1
Dr. Norman Howes, CSED 1
Mr. Steve Edwards,CSED 1
Dr. Craig Will, CSED 1
Mr. Robert Knapper, CSED 1
Mr. Michael Bloom, CSED 1
Ms. Beth Springsteen, CSED 1
Ms. Sylvia Reynolds,CSED 2
IDA Control & Distribution Vault 3

Distnbution List-3

